山东省济宁市金乡县2025届数学九年级第一学期开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是( )
A.OA=OC,OB=ODB.OA=OC,AB∥CD
C.AB=CD,OA=OCD.∠ADB=∠CBD,∠BAD=∠BCD
2、(4分)若为正比例函数,则a的值为( )
A.4B.C.D.2
3、(4分)如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为( )
A.B.C.D.
4、(4分)在中招体育考试中,某校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:=8.2,=21.7,=15,=17.2,则四个班体育考试成绩最不稳定的是( )
A.甲班B.乙班C.丙班D.丁班
5、(4分)若n边形的内角和等于外角和的3倍,则边数n为( )
A.n=6B.n=7
C.n=8D.n=9
6、(4分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为( )
A.B.C.D.
7、(4分)下列式子从左至右变形不正确的是( )
A.=B.=
C.=-D.=
8、(4分)在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x (h)后,船与乙港的距离为y (km),y与x的关系如图所示,则下列说法正确的是( )
A.甲港与丙港的距离是90kmB.船在中途休息了0.5小时
C.船的行驶速度是45km/hD.从乙港到达丙港共花了1.5小时
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知,则________.
10、(4分)方程=3的解是_____.
11、(4分)频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是_____.
12、(4分)如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.
13、(4分)将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形中,点、别在,上,且.
(1)如图①,求证:四边形是平行四边形;
(2)如图②,若,且.,求平行四边形的周长.
15、(8分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,且与直线交于.
(1)求出点的坐标
(2)当时,直接写出x的取值范围.
(3)点在x轴上,当△的周长最短时,求此时点D的坐标
(4)在平面内是否存在点,使以为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.
16、(8分)为迎接4月23日的世界读书日,某书店制定了活动计划,如表是活动计划的部分信息:
(1)杨经理查看计划时发现:A类图书的标价是B类图书标价的1.5倍.若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本.请求出A、B两类图书的标价.
(2)经市场调查后,杨经理发现他们高估了“读书日”对图书销售的影响,便调整了销售方案:A类图书每本按标价降低a元()销售,B类图书价格不变.那么书店应如何进货才能获得最大利润.
17、(10分)如图,将矩形纸片()折叠,使点刚好落在线段上,且折痕分别与边,相交于点,,设折叠后点,的对应点分别为点,.
(1)判断四边形的形状,并证明你的结论;
(2)若,且四边形的面积,求线段的长.
18、(10分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE
(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC= .
20、(4分)观察下列各式:,,,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.
21、(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若,,则阴影部分的面积为__________.
22、(4分)如图,在菱形中,,,以为边作菱形,且;再以为边作菱形,且;.……;按此规律,菱形的面积为______.
23、(4分)如图,矩形中,,连接,以对角线为边按逆时针方向作矩形,使矩形矩形;再连接,以对角线为边,按逆时针方向作矩形,使矩形矩形, ..按照此规律作下去,若矩形的面积记作,矩形的面积记作,矩形的面积记作, ... 则的值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,一次函数y= -3x+6的图象与轴、轴分别交于、两点.
(1)将直线向左平移1个单位长度,求平移后直线的函数关系式;
(2)求出平移过程中,直线在第一象限扫过的图形的面积.
25、(10分)(1)如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是________;
(2)根据下面四个算式:
5232=(5+3)×(53)=8×2;
11252=(11+5)×(115)=16×6=8×12;
15232=(15+3)×(153)=18×12=8×27;
19272=(19+7)×(197)=26×12=8×1.
请你再写出两个(不同于上面算式)具有上述规律的算式;
(3)用文字写出反映(2)中算式的规律,并证明这个规律的正确性.
26、(12分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.
(1)第20天的总用水量为多少米3?
(2)当x≥20时,求y与x之间的函数关系式;
(3)种植时间为多少天时,总用水量达到7000米3?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据平行四边形的判定方法得出A、B、D正确,C不正确;即可得出结论.
【详解】
解:A.∵ OA=OC,OB=OD
∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),
∴A正确,故本选项不符合要求;
B. ∵AB∥CD
∴∠DAO=∠BCO,
在△DAO与△BCO中,
∴△DAO≌△BCO(ASA),
∴OD=OB,
又OA=OC,
∴四边形ABCD是平行四边形,∴B正确,故本选项不符合要求;
C. 由 AB=DC, OA=OC,
∴无法得出四边形ABCD是平行四边形.故不能能判定这个四边形是平行四边形,符合题意;∵AB∥DC,
D.∵∠ADB=∠CBD,∠BAD=∠BCD
∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形),∴D正确,故本选项不符合要求;故选C.
本题考查平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.
2、C
【解析】
根据正比例函数的定义条件:为常数且,自变量次数为,即可列出有关的方程,求出的值.
【详解】
根据正比例函数的定义:,
解得:,
又,
得,
故.
故选:.
本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.
3、A
【解析】
分析:先求得直线AB解析式为y=x﹣1,即可得P(0,﹣1),再根据点A与点A'关于点P成中心对称,利用中点坐标公式,即可得到点A'的坐标.
详解:∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴A(4,3),
设直线AB解析式为y=kx+b,
则,解得,
∴直线AB解析式为y=x﹣1,
令x=0,则y=﹣1,
∴P(0,﹣1),
又∵点A与点A'关于点P成中心对称,
∴点P为AA'的中点,
设A'(m,n),则=0,=﹣1,
∴m=﹣4,n=﹣5,
∴A'(﹣4,﹣5),
故选A.
点睛:本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.
4、B
【解析】
方差越小数据越稳定,根据方差的大小即可得到答案.
【详解】
∵8.2<15<17.2<21.7,
∴乙班的体育考试成绩最不稳定,
故选:B.
此题考查方差的运用,方差考查数据稳定性,方差越小数据越稳定,方差越大数据越不稳定.
5、C
【解析】
根据n边形的内角和等于外角和的3倍,可得方程180(n-2)=360×3,再解方程即可.
【详解】
解:由题意得:180(n-2)=360×3,
解得:n=8,
故选:C.
此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.
6、A
【解析】
分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.
详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.
∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).
∵P1与P2关于原点对称,∴P2(2.8,3.6).
故选A.
点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
7、A
【解析】
根据分式的基本性质逐项判断即得答案.
【详解】
解:A、由分式的基本性质可知:≠,所以本选项符合题意;
B、=,变形正确,所以本选项不符合题意;
C、=-,变形正确,所以本选项不符合题意;
D、,变形正确,所以本选项不符合题意.
故选:A.
本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
8、D
【解析】
由船行驶的函数图象可以看出,船从甲港出发,0.5h后到达乙港,ah后到达丙港,进而解答即可.
【详解】
解:A、甲港与丙港的距离是30+90=120km,错误;
B、船在中途没有休息,错误;
C、船的行驶速度是,错误;
D、从乙港到达丙港共花了小时,正确;
故选D.
此题主要考查了函数图象与实际结合的问题,利用数形结合得出关键点坐标是解题关键,同学们应加强这方面的训练.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由,即成比例的数的问题中,设出辅助参量表示另外两个量代入求值即可,
【详解】
解:因为,设 则
所以.
故答案为:
本题考查以成比例的数为条件求分式的值是常规题,掌握辅助参量法是解题关键.
10、1
【解析】
根据转化的思想,把二次根式方程化成整式方程,先把移项到右边,再两边同时平方把化成整式,进化简得到=1,再两边进行平方,得x=1,从而得解.
【详解】
移项得,=3﹣,
两边平方得,x+3=9+x﹣6,
移项合并得,6=6,
即:=1,
两边平方得,x=1,
经检验:x=1是原方程的解,
故答案为1.
本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.
11、1
【解析】
根据“频数:组距=2且组距为3”可得答案.
【详解】
根据题意知,该小组的频数为2×3=1.
故答案为:1.
本题考查了频数分布直方图,解题的关键是根据题意得出频数:组距=2.
12、1
【解析】
根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.
【详解】
当OB=1cm时,四边形ABCD是平行四边形,
∵BD=16cm,OB=1cm,
∴BO=DO,
又∵AO=OC,
∴四边形ABCD是平行四边形,
故答案为1.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
13、y=2x
【解析】
根据上加下减,左加右减的法则可得出答案
【详解】
一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度变为:
y=2x﹣3+3=2x
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)16.
【解析】
(1)根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可;
(2)由勾股定理可求BC的长,即可求平行四边形ABCD的周长.
【详解】
证明:(1)四边形是平行四边形,
,,
,
,
,
四边形是平行四边形.
(2),.,
,
平行四边形的周长
本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键.
15、(1)(6,3);(2);(3)(0,0);(4)(6,9)或(6,-3)或(-6,3).
【解析】
(1)直接联立两直线解析式,即可得到点A的坐标;
(2)直接在图象上找到时,x的取值范围;
(3)过点A作交点为E即可得出点D与点O重合的时候,△的周长最短,即可得出点D的坐标;
(4)分三种情况考虑:当四边形OAQ1C为平行四边形时;当四边形OQ2AC为平行四边形时;当四边形OACQ3为平行四边形时,分别求出点Q的坐标即可.
【详解】
(1)联立两直线解析式可得
解得:
点A的坐标为(6,3)
(2)由点A(6,3)及图象知,当时,
(3)
过点A作交点为E,由图可知点B关于直线AE的对称点为点O
当点D与点O重合的时候,△的周长最短
即为CO+BC=6+6
此时点D的坐标为(0,0)
(4)存在点,使以为顶点的四边形是平行四边形
如图所示,分三种情况考虑:
当四边形OAQ1C为平行四边形时,
点Q1的横坐标为6,纵坐标为点C的纵坐标+3=9
Q1的坐标为(6,9)
当四边形OQ2AC为平行四边形时,
点Q2的横坐标为6,纵坐标为点A的纵坐标-6=-3
Q2的坐标为(6,-3)
当四边形OACQ3为平行四边形时,
点Q3关于OC的对称点为点A
Q3的坐标为(-6,3)
综上点Q的坐标为:(6,9)或(6,-3)或-6,3).
本题考查了一次函数的性质,平行四边形的性质,轴对称的性质,解题的重点是要熟练掌握各自的性质.
16、 (1)A、B两类图书的标价分别是27元、18元;(2)当书店进A类600本,B类200本时,书店获最大利润.
【解析】
(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
(2)先设购进A类图书m本,总利润为w元,则购进B类图书为(800-m)本,根据题目中所给的信息列出不等式组,求出m的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
【详解】
解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,则可列方程
解得:x=18
经检验:x=18是原分式方程的解
则A、B两类图书的标价分别是27元、18元
(2)设A类进货m本,则B类进货(800-m)本,利润为W元.
由题知:
解得:.
W=(27-a-18)m+(18-12)(800-m)=(3-a)m+4800
∵
∴
∴W随m的增大而增大
∴当m=600时,W取最大值
则当书店进A类600本,B类200本时,书店获最大利润
本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
17、(1)四边形为菱形,理由见解析;(2)
【解析】
(1)根据折叠的性质可得EC=EG,GF=CF,,由GF∥EC,可得,进一步可得GE=GF,于是可得结论;
(2)根据题意可先求得CE的长,过点E作EK⊥GF于点K,在Rt△GEK中,根据勾股定理可求得GK的长,于是FK可求,在Rt△EFK中,再利用勾股定理即可求得结果.
【详解】
(1)四边形为菱形,理由如下:
证明:由折叠可得:,,,
又∵,
∴,
∴,
∴,
∴,
∴四边形为菱形.
(2)如图,∵四边形为菱形,且其面积为,∴,
∴,
过点E作EK⊥GF于点K,则EK=AB=4,
在Rt△GEK中,由勾股定理得:,
∴,
在Rt△EFK中,由勾股定理得:.
本题考查了矩形的性质、折叠的性质、菱形的判定方法和勾股定理等知识,知识点虽多,但难度不大,熟练掌握折叠的性质、菱形的判定方法和勾股定理是解题的关键.
18、(1)证明见解析;(2)1.
【解析】
分析:(1)只要证明三个角是直角即可解决问题;
(2)作OF⊥BC于F.求出EC、OF的长即可;
详解:(1)证明:∵AD∥BC,
∴∠ABC+∠BAD=180°,
∵∠ABC=90°,
∴∠BAD=90°,
∴∠BAD=∠ABC=∠ADC=90°,
∴四边形ABCD是矩形.
(2)作OF⊥BC于F.
∵四边形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面积=•EC•OF=1.
点睛:本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1+
【解析】
分析:首先根据三角形外角的性质可得∠B=∠BAD,根据等角对等边可得BD=AD=√55,然后利用勾股定理计算出CD长,进而可得BC长.
详解:∵∠B+∠DAB=∠ADC,∠ADC=2∠B,
∴∠B=∠BAD,
∴BD=AD=,
∵∠C=90°,
∴CD===1,
∴BC=+1.
故答案为.
点睛:此题主要考查了勾股定理,以及三角形外角的性质,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
20、
【解析】
观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是
【详解】
由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是
故答案为:
本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.
21、40
【解析】
作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.
【详解】
如图,连接EF
∵△ADF与△DEF同底等高,
∴S =S
即S −S =S −S,
即S =S =15cm,
同理可得S =S =25cm,
∴阴影部分的面积为S +S =15+25=40cm.
故答案为40.
此题考查平行四边形的性质,解题关键在于进行等量代换.
22、或.
【解析】
根据题意求出每个菱形的边长以及面积,从中找出规律.
【详解】
解:当菱形的边长为a,其中一个内角为120°时,
其菱形面积为:a2,
当AB=1,易求得AC=,此时菱形ABCD的面积为:=×1,
当AC=时,易求得AC1=3,此时菱形面积ACC1D1的面积为:=×()2,
当AC1=3时,易求得AC2=3,此时菱形面积AC1C2D2的面积为: =×()4,
……,
由此规律可知:菱形AC2018C2019D2019的面积为×()2×2019=.,
故答案为:或.
本题考查规律型,解题的关键是正确找出菱形面积之间的规律,本题属于中等题型.
23、
【解析】
首先根据矩形的性质,求出AC,根据边长比求出面积比,依次类推,得出规律,即可得解.
【详解】
∵四边形ABCD是矩形,
∴AD⊥DC,
∴AC=,
∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,
∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2
∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,
∵矩形ABCD的面积=2×1=2,
∴矩形AB1C1C的面积=,
依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4
∴矩形AB2C2C1的面积=
∴矩形AB3C3C2的面积=,
按此规律第n个矩形的面积为:
则
故答案为:.
本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.
二、解答题(本大题共3个小题,共30分)
24、(1)y= -3x+3;(1).
【解析】
(1)根据平移的性质“左加右减”,将x换成x+1整理后即可得出结论;
(1)根据三角形的面积公式直接求出扫过的面积即可得出结论.
【详解】
(1)根据平移规律可得平移后的直线的解析式为:
y= -3(x+1)+6= -3x-3+6= -3x+3;
(1)对于一次函数y= -3x+6,当x=0时,y=6,所以B(0,6),
令y=0,即-3x+6=0,解得x=1.所以A(1,0)
同理可得直线y= -3x+3与x轴的交点C(1,0),与y轴的交点D(0,3)
因此直线AB在第一象限扫过的图形的面积为:
S=OA×OB-OC×OD=×1×6-×1×3=.
本题考查一次函数图象的几何变换以及三角形的面积公式,解题的关键是熟记平移的性质“上加下减,左加右减”,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.
25、(1)a2-b2=(a+b)(ab);(2)72-52=8×3;92-32=8×9等;(3)规律:任意两个奇数的平方差是8的倍数,证明见解析
【解析】
(1)利用两个图形,分别求出阴影部分的面积,即可得出关系式;
(2)任意写出两个奇数的平方差,右边写出8的倍数的形式即可;
(3)两个奇数的平方差一定能被8整除;任意写一个即可,如:(2n+1)2-(2n-1)2=8n.
【详解】
解:(1)图甲的阴影部分的面积为:a2-b2,图乙平行四边形的底为(a+b),高为(a-b),因此面积为:(a+b)(a-b),
所以a2-b2=(a+b)(a-b),
故答案为:a2-b2=(a+b)(a-b);
(2)32-12=(3+1)×(3-1)=4×2=8×1,
172-52=(17+5)×(17-5)=22×12=8×33,
(3)两个奇数的平方差一定能被8整除;
设较大的奇数为(2n+1)较小的奇数为(2n-1),
则,(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)][(2n+1)-(2n-1)]=8n,
∴(2n+1)2-(2n-1)2=8n.即:任意两个奇数的平方差是8的倍数
本题考查平方差公式及其应用,掌握平方差公式的结构特征是正确应用的前提.
26、(1)1000;(2)y=300x﹣5000;(3)40
【解析】
根据题意得出第20天的总用水量;y与x的函数关系式为分段函数,则需要分两段分别求出函数解析式;将y=7000代入函数解析式求出x的值.
【详解】
(1)第20天的总用水量为1000米3
当0<x<20时,设y=mx ∵函数图象经过点(20,1000),(30,4000) ∴m=50
y与x之间的函数关系式为:y=50x
当x≥20时,设y=kx+b ∵函数图象经过点(20,1000),(30,4000)
∴解得∴y与x之间的函数关系式为:y=300x﹣5000
(3)当y=7000时, 有7000=300x﹣5000,解得x=40
考点:一次函数的性质
题号
一
二
三
四
五
总分
得分
东省济宁市金乡县2025届九上数学开学经典试题【含答案】: 这是一份东省济宁市金乡县2025届九上数学开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省金乡县数学九上开学检测试题【含答案】: 这是一份2025届山东省金乡县数学九上开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省济宁市曲阜一中九年级数学第一学期开学复习检测模拟试题【含答案】: 这是一份2025届山东省济宁市曲阜一中九年级数学第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

