北京市密云区冯家峪中学2024年数学九上开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列因式分解错误的是( )
A.2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1)B.x2+2x+1=(x+1)2
C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x+y)(x﹣y)
2、(4分)若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2B.m<﹣2
C.m>2D.m<2
3、(4分)学习了正方形之后,王老师提出问题:要判断一个四边形是正方形,有哪些思路?
甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;
乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;
丙同学说:判定四边形的对角线相等,并且互相垂直平分;
丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.
上述四名同学的说法中,正确的是()
A.甲、乙B.甲、丙C.乙、丙、丁D.甲、乙、丙、丁
4、(4分)分式有意义,则 x 的取值范围是( )
A.x 1B.x 0C.x 1D.x 1
5、(4分)一次函数与,在同一平面直角坐标系中的图象是( )
A.B.C.D.
6、(4分)正多边形的内角和为540°,则该多边形的每个外角的度数为( )
A.36°B.72°C.108°D.360°
7、(4分)如图,在四边形中, , 交于 , 平分 ,,下面结论:① ;②是等边三角形;③;④,其中正确的有
A.1个B.2个C.3个D.4个
8、(4分)用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是 ( )
A.(1)(2)(4)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(3)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.
10、(4分)若,则=______.
11、(4分)若在实数范围内有意义,则x的取值范围是______.
12、(4分)若正比例函数y=kx的图象经过点(1,2),则k=_______.
13、(4分)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打七折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的函数关系如图所示,那么图中a的值是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,,是□ABCD的对角线上的两点,,求证:.
15、(8分)在△ABC中,
(1)作线段AC的垂直平分线1,交AC于点O:(保留作图痕迹,请标明字母)
(2)连接BO并延长至D,使得,连接DA、DC,证明四边形ABCD是矩形.
16、(8分)如图,在平行四边形中,已知点在上,点在上,且.
求证:.
17、(10分)某公司销售部有销售人员14人,为提高工作效率和员工的积极性,准备实行“每月定额销售,超额有奖”的措施.调查这14位销售人员某月的销售量,获得数据如下表:
(1)求这14位营销人员该月销售量的平均数和中位数
(2)如果你是该公司的销售部管理者,你将如何确定这个定额?请说明理由.
18、(10分)某中学举办“校园好声音”朗诵大赛,根据初赛成绩,七年级和八年级各选出5名选手组成七年级代表队和八年级代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示:
(1)根据所给信息填写表格;
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)若七年级代表队决赛成绩的方差为70,计算八年级代表队决赛成绩的方差,并判断哪个代表队的选手成绩较为稳定.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)点A(-2,3)关于x轴对称的点B的坐标是_____
20、(4分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为__.
21、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.
22、(4分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
23、(4分)如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,G,H为BC上的点连接DH,EG.若AB=5cm,BC=6cm,GH=3cm,则图中阴影部分的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC 中,∠B=30°,∠C=45°,AC=2.求 BC 边上的高及△ABC 的面积.
25、(10分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.
26、(12分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象。
(1)求s2与t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
A、原式=(x﹣2)(2x﹣1),错误;
B、原式=(x+1)2,正确;
C、原式=xy(x﹣y),正确;
D、原式=(x+y)(x﹣y),正确,
故选A.
2、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
3、D
【解析】
根据正方形的判定方法进行解答即可.正方形的判定定理有:对角线相等的菱形;对角线互相垂直的矩形;对角线互相垂直平分且相等的四边形.
【详解】
解:甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;
有一个角为直角的菱形的特征是:四条边都相等,四个角都是直角,则该菱形是正方形.故说法正确;
乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;有一组邻边相等的矩形的特征是:四条边都相等,四个角都是直角.则该矩形为正方形.故说法正确;
丙同学说:判定四边形的对角线相等,并且互相垂直平分;对角线相等且互相垂直平分的四边形是正方形.故说法正确;
丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.有一个角是直角的平行四边形是矩形,有一组邻边相等的矩形是正方形.故说法正确;
故选D.
本题考查正方形的判定定理,熟记这些判定定理才能够正确做出判断.
4、C
【解析】
分析:根据分式有意义的条件可得x﹣1≠0,再解不等式即可.
详解:由题意得:x﹣1≠0,解得:x≠1.
故选C.
点睛:本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
5、C
【解析】
根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.
【详解】
当ab>0,a,b同号,y=abx经过一、三象限,
同正时,y=ax+b过一、三、二象限;
同负时过二、四、三象限,
当ab<0时,a,b异号,y=abx经过二、四象限
a<0,b>0时,y=ax+b过一、三、四象限;
a>0,b<0时,y=ax+b过一、二、四象限.
故选C.
主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
6、B
【解析】
先根据内角和的度数求出正多边形的边数,再根据外角和度数进行求解.
【详解】
设这个正多边形的边数为x,
则(x-2)×180°=540°,解得x=5,
所以每个外角的度数为360°÷5=72°,
故选B.
此题主要考查多边形的内角和公式,解题的关键是熟知多边形的内角和与外角和公式.
7、C
【解析】
由两组对边平行证明四边形AECD是平行四边形,由AD=DC得出四边形AECD是菱形,得出AE=EC=CD=AD,则∠EAC=∠ECA,由角平分线定义得出∠EAB=∠EAC,则∠EAB=∠EAC=∠ECA,证出∠EAB=∠EAC=∠ECA=30°,则BE=AE,AC=2AB,①正确;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,则△ABO是等边三角形,②正确;由菱形的性质得出S△ADC=S△AEC=AB•CE,S△ABE=AB•BE,由BE=AE=CE,则S△ADC=2S△ABE,③错误;由DC=AE,BE=AE,则DC=2BE,④正确;即可得出结果.
【详解】
解:∵AD∥BC,AE∥CD,
∴四边形AECD是平行四边形,
∵AD=DC,
∴四边形AECD是菱形,
∴AE=EC=CD=AD,
∴∠EAC=∠ECA,
∵AE平分∠BAC,
∴∠EAB=∠EAC,
∴∠EAB=∠EAC=∠ECA,
∵∠ABC=90°,
∴∠EAB=∠EAC=∠ECA=30°,
∴BE=AE,AC=2AB,①正确;
∵AO=CO,
∴AB=AO,
∵∠EAB=∠EAC=30°,
∴∠BAO=60°,
∴△ABO是等边三角形,②正确;
∵四边形AECD是菱形,
∴S△ADC=S△AEC=AB•CE,
S△ABE=AB•BE,
∵BE=AE=CE,
∴S△ADC=2S△ABE,③错误;
∵DC=AE,BE=AE,
∴DC=2BE,④正确;
故选:C.
本题考查平行四边形的判定、菱形的判定与性质、角平分线定义、等边三角形的判定、含30°角直角三角形的性质、三角形面积的计算等知识,熟练掌握菱形的性质与含30°角直角三角形的性质是解题关键.
8、A
【解析】
试题分析:根据全等的直角三角形的性质依次分析各小题即可判断.
用两个全等的直角三角形一定可以拼成平行四边形、矩形、等腰三角形
故选A.
考点:图形的拼接
点评:图形的拼接是初中数学平面图形中比较基础的知识,,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
将这7个数按大小顺序排列,找到最中间的数即为中位数.
【详解】
解:这组数据从大到小为:27,1,1,1,42,42,46,
故这组数据的中位数1.
故答案为1.
此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算,难度一般.
10、1
【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
【详解】
∵
∴
∴
∴
故答案为1.
本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
11、x≥-2
【解析】
分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可.
详解:∵x+2≥0
∴x≥-2.
故答案为x≥-2.
点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.
12、2
【解析】
由点(2,2)在正比例函数图象上,根据函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.
【详解】
∵正比例函数y=kx的图象经过点(2,2),
∴2=k×2,即k=2.
故答案为2.
本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×2.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.
13、1.
【解析】
根据题意求出当x≥10时的函数解析式,当y=27时代入相应的函数解析式,可以求得相应的自变量a的值,本题得以解决.
【详解】
解:由题意得每本练习本的原价为:20÷10=2(元),
当x≥10时,函数的解析式为y=0.7×2(x-10)+20=1.4x+6,
当y=27时,1.4x+6=27,解得x=1,
∴a=1.
故答案为:1.
本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,根据关系式可以解答问题.
三、解答题(本大题共5个小题,共48分)
14、详见解析.
【解析】
试题分析:根据平行四边形的性质得到AB=CD,AB∥CD,推出,根据垂平行线的性质得到,根据AAS可判定;根据全等三角形的性质即可得.
试题解析:证明:∵四边形ABCD是平行四边形,
∴.
∴.
∵,
∴.
∴.
∴.
考点:平行四边形的性质;全等三角形的判定及性质.
15、 (1)详见解析;(2)详见解析
【解析】
(1)利用基本作图作AC的垂直平分线得到AC的中点O;
(2)利用直角三角形斜边上的中线得到,然后根据对角线互相平分且相等的四边形为矩形可证明四边形ABCD是矩形.
【详解】
(1)解:如图,点O为所作:
(2)证明:∵线段AC的垂直平分线,
,
,
,
,
∴四边形ABCD为矩形.
本题考查了作图—基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了矩形的判定.
16、证明见解析.
【解析】
由“平行四边形ABCD的对边平行且相等”的性质推知AB=CD,AB∥CD.然后根据图形中相关线段间的和差关系求得BE=FD,易证四边形EBFD是平行四边形.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∵AE=CF.
∴BE=FD,BE∥FD,
∴四边形EBFD是平行四边形,
∴DE=BF.
本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
17、(1)平均数38(件);中位数:30(件);(2)答案见解析
【解析】
(1)按照平均数,中位数的定义分别求得.
(2)根据平均数,中位数的意义回答.
【详解】
(1)解:平均数=38(件)
中位数:30(件)
(2)解:定额为38件,因为平均数反映平均程度;
或:定额为30件,因为中位数可以反映一半员工的工作状况,把一半以上作为目标;
或:除去最高分、最低分的平均数为=30.75≈31(件)
因为除去极端情形较合理.
本题考查了学生对平均数、中位数的计算及运用其进行分析的能力.
18、(1)填表见解析;(2)七年级代表队成绩好些;(3)七年级代表队选手成绩较为稳定.
【解析】
(1)根据平均数、众数和中位数的定义分别进行解答即可;
(2)根据表格中的数据,可以结合两个年级成绩的平均数和中位数,说明哪个队的决赛成绩较好;
(3)根据方差公式先求出八年级的方差,再根据方差的意义即可得出答案.
【详解】
(1)八年级的平均成绩是:(75+80+85+85+100)÷5=85(分);
85出现了2次,出现的次数最多,则众数是85 分;
把八年级的成绩从小到大排列,则中位数是80分;
填表如下:
(2)七年级代表队成绩好些.
∵两个队的平均数都相同,七年级代表队中位数高,
∴七年级代表队成绩好些.
(3)S八年级2=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160 ;
∵S七年级2<S八年级2,
∴七年级代表队选手成绩较为稳定.
本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了中位数和众数.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(-2,-3).
【解析】
根据在平面直角坐标系中,关于x轴对称的两个点的横坐标相同,纵坐标相反即可得出答案.
解:点A(-2,3)关于x轴对称的点B的坐标是(-2,-3).
故答案为(-2,-3).
20、 (-3,1)
【解析】
直接利用已知点坐标得出原点的位置进而得出答案.
【详解】
解:如图所示:“兵”的坐标为:(-3,1).
故答案为(-3,1).
本题考查坐标确定位置,正确得出原点位置是解题关键.
21、①②③④⑤
【解析】
由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG,得出①正确,设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1,由勾股定理求出x=2,得出②正确;由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;分别求出△EGC,△AEF的面积,可以判断④,由
,可求出△FGC的面积,故此可对⑤做出判断.
【详解】
解:解:∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=2DE,
∴DE=1,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=1,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
∵在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL).
∴①正确;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF.
设BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+1.
在Rt△ECG中,由勾股定理得:CG1+CE1=EG1.
∵CG=6-x,CE=4,EG=x+1,
∴(6-x)1+41=(x+1)1,解得:x=2.
∴BG=GF=CG=2.
∴②正确;
∵CG=GF,
∴∠CFG=∠FCG.
∵∠BGF=∠CFG+∠FCG,∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF.
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG.
∴AG∥CF.
∴③正确;
∵S△EGC=×2×4=6,S△AEF=S△ADE=×6×1=6,
∴S△EGC=S△AFE;
∴④正确,
∵△CFG和△CEG中,分别把FG和GE看作底边,
则这两个三角形的高相同.
∴,
∵S△GCE=6,
∴S△CFG=×6=2.6,
∴⑤正确;
故答案为①②③④⑤.
本题考查了正方形性质,折叠性质,全等三角形的性质和判定,等腰三角形的性质和判定,平行线的判定等知识点的运用,依据翻折的性质找出其中对应相等的线段和对应相等的角是解题的关键.
22、y=2x+1
【解析】
分析:直接根据函数图象平移的法则进行解答即可.
详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
故答案为y=2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
23、6cm1.
【解析】
用四边形DBCE的面积减去△DOE的面积+△HOG的面积,即可得.
【详解】
解:连接DE,作AF⊥BC于F,
∵D,E分别是AB,AC的中点,
∴DE=BC=3,DE∥BC,
∵AB=AC,AF⊥BC,
∴BF=BC=3,
在Rt△ABF中,AF==4,
∴△ABC的面积=×6×4=11,
∵DE∥BC,
∴△ADE∽△ABC,
∴△ADE的面积=11×=3,
∴四边形DBCE的面积=11﹣3=9,
△DOE的面积+△HOG的面积=×3×1=3,
∴图中阴影部分的面积=9﹣3=6(cm1),
故答案为6cm1.
本题考查的知识点是三角形中位线定理,解题关键是作适当的辅助线进行解题.
二、解答题(本大题共3个小题,共30分)
24、2,2+2.
【解析】
先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=2 得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.
【详解】
∵AD⊥BC,∠C=45°,
∴△ACD是等腰直角三角形,
∵AD=CD.
∵AC=2,
∴2AD=AC,即2AD=8,解得AD=CD=2.
∵∠B=30°,
∴AB=2AD=4,
∴BD= ,
∴BC=BD+CD=2 +2,
∴S = BC⋅AD= (2+2)×2=2+2.
此题考查勾股定理,解题关键在于求出BD的长.
25、证明见解析.
【解析】
由平行四边形的性质,得到AD∥BC,AD=BC,由,得到,即可得到结论.
【详解】
证明:四边形是平行四边形,
∴,.
∵,
∴.
∴,
∵,,
∴四边形是平行四边形.
本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.
26、 (1)s2=-96t+2400(2)小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m
【解析】
(1)首先由小明的爸爸以96m/min速度从邮局同一条道路步行回家,求得小明的爸爸用的时间,即可得点D的坐标,然后由E(0,2400),F(25,0),利用待定系数法即可求得答案;
(2)首先求得直线BC的解析式,然后求直线BC与EF的交点,即可求得答案.
【详解】
解:(1)∵小明的爸爸以96m/min速度从邮局同一条道路步行回家,
∴小明的爸爸用的时间为:=25(min),
即OF=25,
如图:设s2与t之间的函数关系式为:s2=kt+b,
∵E(0,2400),F(25,0),
∴,
解得:,
∴s2与t之间的函数关系式为:s2=-96t+2400;
(2)如图:小明用了10分钟到邮局,
∴D点的坐标为(22,0),
设直线BD即s1与t之间的函数关系式为:s1=at+c(12≤t≤22),
∴解得:,
∴s1与t之间的函数关系式为:s1=-240t+5280(12≤t≤22),
当s1=s2时,小明在返回途中追上爸爸,
即-96t+2400=-240t+5280,
解得:t=20,
∴s1=s2=480,
∴小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m.
题号
一
二
三
四
五
总分
得分
月销售量(件)
145
55
37
30
24
18
人数(人)
1
1
2
5
3
2
平均数(分)
中位数(分)
众数(分)
七年级
85
八年级
85
100
平均数(分)
中位数(分)
众数(分)
初二
85
85
85
初三
85
80
100
北京密云冯家峪中学2025届九上数学开学教学质量检测试题【含答案】: 这是一份北京密云冯家峪中学2025届九上数学开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京密云冯家峪中学九年级数学第一学期开学学业水平测试试题【含答案】: 这是一份2024年北京密云冯家峪中学九年级数学第一学期开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年北京市密云区冯家峪中学数学九年级第一学期期末复习检测试题含答案: 这是一份2023-2024学年北京市密云区冯家峪中学数学九年级第一学期期末复习检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,方程的解的个数为,已知,且α是锐角,则α的度数是等内容,欢迎下载使用。