北京市房山区九级2024年数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为( )
A.x(x-1)=90 B.x(x-1)=2×90 C.x(x-1)=90÷2 D.x(x+1)=90
2、(4分)甲、乙、丙、丁四人进行射击测试,每人射击10次,四人的平均成绩均是9.4环,方差分别是0.43,1.13,0.90,1.68,则在本次射击测试中,成绩最稳定的是( )
A.甲B.乙C.丙D.丁
3、(4分) “古诗•送郎从军:送郎一路雨飞池,十里江亭折柳枝;离人远影疾行去,归来梦醒度相思.”中,如果用纵轴y表示从军者与送别者行进中离原地的距离,用横轴x表示送别进行的时间,从军者的图象为O→A→B→C,送别者的图象为O→A→B→D,那么下面的图象与上述诗的含义大致吻合的是( )
A.B.C.D.
4、(4分)一个多边形的每一个内角都是 ,这个多边形是( )
A.四边形B.五边形C.六边形D.八边形
5、(4分)某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是( )
A.85分B.87分C.87.5分D.90分
6、(4分)如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是( )
A.130°B.80°C.100°D.50°
7、(4分)点向右平移个单位后落在直线上,则的值为( )
A.2B.3C.4D.5
8、(4分)一组数据5,8,8,12,12,12,44的众数是( )
A.5B.8C.12D.44
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.
10、(4分)若分式的值为正数,则x的取值范围_____.
11、(4分)如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.
12、(4分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
13、(4分)如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,在直角坐标系 xOy 中,一次函数=x+b(≠0)的图象与反比例函数 的图象交于A(1,4),B(2,m)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求△AOB 的面积;
(3)当 x 的取值范围是 时,x+b>(直接将结果填在横线上)
15、(8分)一个不透明的袋子里装有黑白两种颜色的球其40只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:
(1)摸到黑球的频率会接近 (精确到0.1);
(2)估计袋中黑球的个数为 只:
(3)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了 个黑球.
16、(8分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:
(1)谁先出发早多长时间谁先到达B地早多长时间?
(2)两人在途中的速度分别是多少?
(3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).
17、(10分)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.
(1)当点C横坐标为4时,求点E的坐标;
(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;
(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.
18、(10分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.
其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.
(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;
(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知a+b=0目a≠0,则=_____.
20、(4分)如果顺次连接四边形的四边中点得到的新四边形是菱形,则与的数量关系是___.
21、(4分)分解因式:2a3﹣8a=________.
22、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ .
23、(4分)如图,已知中,,,,是的垂直平分线,交于点,连接,则___
二、解答题(本大题共3个小题,共30分)
24、(8分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:画出图形,把截去的部分打上阴影
新多边形内角和比原多边形的内角和增加了.
新多边形的内角和与原多边形的内角和相等.
新多边形的内角和比原多边形的内角和减少了.
将多边形只截去一个角,截后形成的多边形的内角和为,求原多边形的边数.
25、(10分)计算(2+1)(2﹣1)﹣(1﹣2)2
26、(12分)已知一次函数y=kx+b的图象经过点A(-3,-2)及点B(0,4).
(1)求此一次函数的解析式;
(2)当y=-5时求x的值;
(3)求此函数图象与两坐标轴所围成的三角形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.
【详解】
设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.
故选A.
本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.
2、A
【解析】
比较方差的大小,即可判定方差最小的较为稳定,即成绩最稳的是甲同学.
【详解】
∵甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.43,1.13,0.90,1.68,
∴,
∴成绩最稳定的同学是甲.
故选A.
此题主要考查利用方差,判定稳定性,熟练掌握,即可解题.
3、C
【解析】
由题意得送郎一路雨飞池,说明十从军者和送别者的函数图象在一开始的时候一样,再根据十里江亭折柳枝,说明从军者与送者离原地的距离不变,最后根据离人远影疾行去,说明从军者离原地的距离越来越远,送别者离原地的距离越来越近即可得出答案.
【详解】
∵送郎一路雨飞池,
∴十从军者和送别者的函数图象在一开始的时候一样,
∵十里江亭折柳枝,
∴从军者与送者离原地的距离不变,
∵离人远影疾行去,
∴从军者离原地的距离越来越远,送别者离原地的距离越来越近.
故选:C.
考查了函数的图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.
4、B
【解析】
根据多边形的内角和公式列式计算即可得解.
【详解】
解:设这个多边形是n边形,
由题意得,(n﹣2)•180°=108°•n,
解得n=5,
所以,这个多边形是五边形.
故选B.
本题考查了多边形的内角问题,熟记多边形的内角和公式是解题的关键.
5、B
【解析】
根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.
【详解】
解:王老师的综合成绩为:90×40%+85×60%=87(分),
故选:B.
此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.
6、A
【解析】
根据平行四边形的性质即可解答.
【详解】
解:在平行四边形ABCD中,
∠A+∠C=100°,
故∠A=∠C=50°,
且AD∥BC,
故∠B=180°-50°=130°.
故答案选A.
本题考查平行四边形性质,对边平行,熟悉掌握是解题关键.
7、A
【解析】
根据向右平移横坐标相加,纵坐标不变得出点P平移后的坐标,再将点P平移后的坐标代入y=1x-1,即可求出m的值.
【详解】
解:∵将点P(0,3)向右平移m个单位,
∴点P平移后的坐标为(m,3),
∵点(m,3)在直线y=1x-1上,
∴1m-1=3,
解得m=1.
故选A.
本题考查了点的平移和一次函数图象上点的坐标特征,求出点P平移后的坐标是解题的关键.
8、C
【解析】
根据题目中的数据可以得到这组数据的众数,从而可以解答本题.
【详解】
解:∵一组数据5,8,8,12,12,12,44,
∴这组数据的众数是12,
故选C.
本题考查众数,解答本题的关键是明确题意,会求一组数据的众数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,
∴b>0,
∵y随x的增大而减小,
∴k<0,
例如y=-x+1(答案不唯一,k<0且b>0即可).
考点:一次函数图象与系数的关系.
10、x>1
【解析】
试题解析:由题意得:
>0,
∵-6<0,
∴1-x<0,
∴x>1.
11、1
【解析】
过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值
【详解】
解:
∵四边形ABCD是平行四边形,
∴AD∥BC,
过点A作AE⊥BC于E,
∴当AE∥QP时,则四边形ABPQ是直角梯形,
∵∠B=60°,AB=8cm,
∴BE=4cm,
∵P,Q运动的速度都为每秒1cm,
∴AQ=10﹣t,AP=t,
∵BE=4,
∴EP=t﹣4,
∵AE⊥BC,AQ∥EP,AE∥QP,
∴QP⊥BC,AQ⊥AD,
∴四边形AEPQ是矩形,
∴AQ=EP,
即10﹣t=t﹣4,
解得t=1,
故答案为:1.
此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线
12、10%.
【解析】
设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
【详解】
设平均每次降价的百分率为,根据题意列方程得,
,
解得,(不符合题意,舍去),
答:这个百分率是.
故答案为.
本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.
13、2
【解析】
连接AC,
∵四边形ABCD为菱形,
∴AB=BC=4,A、C关于BD对称,
∴连AM交BD于P,
则PM+PC=PM+AP=AM,
根据两点之间线段最短,AM的长即为PM+PC的最小值.
∵∠ABC=60°,AB=BC,
∴△ABC为等边三角形,
又∵BM=CM,
∴AM⊥BC,
∴AM=,
故答案为:2.
本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),;(1)3;(3)x<0或
【解析】
(1)把(1,4)代入y=,易求k1,从而可求反比例函数解析式,再把B点坐标代入反比例函数解析式,易求m,然后把A、B两点坐标代入一次函数解析式,易得关于k1、b的二元一次方程,解可求k1、b,从而可求一次函数解析式;
(1)设直线AB与x轴交于点C,再根据一次函数解析式,可求C点坐标,再根据分割法可求△AOB的面积;
(3)观察可知当x<0或1<x<3时,k1x+b>.
【详解】
解:(1)把(1,4)代入y=,得
k1=4,
∴反比例函数的解析式是y=,
当x=1时,y=,
∴m=1,
把(1,4)、(1,1)代入y1=k1x+b中,得
,
解得,
∴一次函数的解析式是y=-1x+6;
(1)设直线AB与x轴交于点C,
当y=0时,x=3,
故C点坐标是(3,0),
∴S△AOB=S△AOC-S△BOC=×3×4-×3×1=6-3=3;
(3)在第一象限,当1<x<1时,k1x+b>;
还可观察可知,当x<0时,k1x+b>.
∴x<0或1<x<1.
本题考查了待定系数法求函数解析式、一次函数与反比例函数的交点问题,解题的关键是先求出反比例函数,进而求B点坐标,然后求出一次函数的解析式.
15、(1)0.5;(2)20;(3)10
【解析】
(1)根据统计图找到摸到黑球的频率稳定到的常数即为本题的答案;
(2)根据(1)的值求得答案即可;
(3)设向袋子中放入了黑个红球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.
【详解】
解:(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.5附近,
故摸到黑球的频率会接近0.5,
故答案为:0.5;
(2)∵摸到黑球的频率会接近0.5,
∴黑球数应为球的总数的一半,
∴估计袋中黑球的个数为20只,
故答案为:20;
(3)设放入黑球x个,
根据题意得:=0.6,
解得x=10,
经检验:x=10是原方程的根,
故答案为:10;
本题主要考查概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解题的关键.
16、(1)甲先出发,早了3小时;乙先到达B地,早了3小时;(2)甲速为10千米/小时,乙速为40千米/小时;(3)y甲=10x,y乙=40x﹣1.
【解析】
(1)结合图象,依据点的坐标代表的意思,即可得出结论;
(2)由速度=路程÷时间,即可得出结论;
(3)根据待定系数法,可求出乙的函数表达式,结合甲的速度依据甲的图象过原点,可得出甲的函数表达式.
【详解】
解:(1)结合图象可知,甲先出发,早了3小时;乙先到达B地,早了3小时;
(2)甲的速度:80÷8=10km/h,
乙的速度:80÷(5-3)=40km/h.
(3)设y甲=kx,由图知:8k=80,k=10
∴y甲=10x;
设y乙=mx+n,由图知:
解得
∴y乙=40x﹣1
答:甲、乙在行驶过程中的路程与时间之间的函数关系式分别为:
y甲=10x,y乙=40x﹣1.
本题考查了一次函数中的相遇问题、用待定系数法求函数表达式,解题的关键是:(1)明白坐标系里点的坐标代表的意义;(2)知道速度=路程÷时间;(3)会用待定系数法求函数表达式.本题难度不大,属于基础题,做此类问题是,结合函数图象,找出点的坐标才能做对题.
17、(1)(﹣2,4);(2)S=﹣t2+1t;(3)y=x+1
【解析】
(1)作CF⊥OA于F,EG⊥x轴于G.只要证明△CFO≌△OGE即可解决问题;
(2)只要证明△EOB≌△COA,可得BE=AC,∠OBE=∠OAC=45°,推出∠EBC=90°,即EB⊥AB,由C(t,﹣t+1),可得BC=t,AC=BE=(1﹣t),根据S=•BC•EB,计算即可;
(3)由(1)可知E(t﹣1,t),设x=1﹣t,y=t,可得y=x+1.
【详解】
解:(1)作CF⊥OA于F,EG⊥x轴于G.
∴∠CFO=∠EGO=90°,
令x=4,y=﹣4+1=2,
∴C(4,2),
∴CF=2,OF=4,
∵四边形OCDE是正方形,
∴OC=OE,OC⊥OE,
∵OC⊥OE,
∴∠COF+∠EOG=90°,∠COF+∠OCF=90°,
∴∠EOG=∠OCF,
∴△CFO≌△OGE,
∴OG=OF=4,OG=CF=2,
∴G(﹣2,4).
(2)∵直线y=﹣x+1交y轴于B,
∴令x=0得到y=1,
∴B(0,1),
令y=0,得到x=1,
∴A(1,0),
∴OA=OB=1,∠OAB=∠OBA=45°,
∵∠AOB=∠EOC=90°,
∴∠EOB=∠COA,
∵OE=OC,
∴△EOB≌△COA,
∴BE=AC,∠OBE=∠OAC=45°,
∴∠EBC=90°,即EB⊥AB,
∵C(t,﹣t+1),
∴BC=t,AC=BE=(1﹣t),
∴S=•BC•EB=×t•(1﹣t)=﹣t2+1t.
(3)当点C在线段AB上运动时,由(1)可知E(t﹣1,t),
设x=1﹣t,y=t,
∴t=x+1,
∴y=x+1.
故答案为(1)(﹣2,4);(2)S=﹣t2+1t;(3)y=x+1.
本题考查一次函数综合题、全等三角形的判定和性质、正方形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
18、(1)y=10x+3000(65≤x≤75);(2)方案1:当0<a<10时,购进A种服装75件,B种服装25件;方案2:当a=10时,按哪种方案进货都可以;方案3:当10<a<20时,购进A种服装65件,B种服装35件.
【解析】
(1)根据题意可知购进A种服装为x件,则购进B种服装为(100-x),A、B两种服装每件的利润分别为40元、30元,据此列出函数关系式,然后再根据A种服装不少于65件且购进这100件服装的费用不得超过7500元,求出x的取值范围即可;
(2)根据题意列出含有a的一次函数解析式,再根据一次函数的性质求解即可.
【详解】
解:(1)∵80x+60(100﹣x)≤7500,
解得:x≤75,
∴y=40x+30(100﹣x)=10x+3000(65≤x≤75);
(2)∵y=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000,
方案1:当0<a<10时,10﹣a>0,y随x的增大而增大,所以当x=75时,y有最大值,则购进A种服装75件,B种服装25件;
方案2:当a=10时,无论怎么购进,获利相同,所以按哪种方案进货都可以;
方案3:当10<a<20时,10﹣a<0,y随x的增大而减小,所以当x=65时,y有最大值,则购进A种服装65件,B种服装35件.
一次函数在实际生活中的应用是本题的考点,根据题意列出一次函数解析式并熟练掌握其性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先将分式变形,然后将代入即可.
【详解】
解:
,
故答案为1
本题考查了分式,熟练将式子进行变形是解题的关键.
20、
【解析】
先证明EFGH是平行四边形,再根据菱形的性质求解即可.
【详解】
如图1所示,连接AC,
∵E、F、G、H分别是四边形ABCD边的中点,
∴HE∥AC,HE=AC,GF∥AC,GF=AC,
∴HE=GF且HE∥GF;
∴四边形EFGH是平行四边形. 连接BD,如图2所示:
若四边形EFGH成为菱形,
则EF=HE,
由(1)得:HE=AC,
同理:EF=BD,
∴AC=BD;
故答案为:AC=BD.
本题考查了平行四边形的判定、中点四边形、菱形的性质、三角形中位线定理;熟练掌握三角形中位线定理是解决问题的关键.
21、2a(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
22、
【解析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
【详解】
解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵AP×BC=AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
∴AM=,
故答案为:.
考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式
23、5
【解析】
由是的垂直平分线可得AD=CD,可得∠CAD=∠ACD,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B,可得CD=BD,可知CD=BD=AD=
【详解】
解:∵是的垂直平分线
∴AD=CD
∴∠CAD=∠ACD
∵,,
又∵
∴
∴∠ACB=90°
∵∠ACD+∠DCB=90°, ∠CAB+∠B=90°
∴∠DCB=∠B
∴CD=BD
∴CD=BD=AD=
故答案为5
本题考查了线段垂直平分线、勾股定理逆定理以及等腰三角形的性质,掌握勾股定理逆定理及利用等腰三角形求线段是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)作图见解析;(2)15,16或1.
【解析】
(1)①过相邻两边上的点作出直线即可求解;
②过一个顶点和相邻边上的点作出直线即可求解;
③过相邻两边非公共顶点作出直线即可求解;
(2)根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.
【详解】
如图所示:
设新多边形的边数为n,
则,
解得,
若截去一个角后边数增加1,则原多边形边数为15,
若截去一个角后边数不变,则原多边形边数为16,
若截去一个角后边数减少1,则原多边形边数为1,
故原多边形的边数可以为15,16或1.
本题主要考查了多边形的内角和公式,注意要分情况进行讨论,避免漏解.
25、4-2.
【解析】
直接利用乘法公式以及二次根式的性质分别计算得出答案.
【详解】
解:原式=12-1-(1-4+12)=4-2
此题主要考查了二次根式结合平方差公式和完全平方公式的混合运算,正确掌握相关运算法则是解题关键.
26、 (1) y=2x+4;(2);(3)4.
【解析】
试题分析:
(1)把点A、B的坐标代入列方程组求得的值即可求得一次函数的解析式;
(2)把代入(1)中所求得的解析式中,解方程可求得对应的的值;
(3)由解析式求得直线与轴的交点坐标,结合点B和原点就可求得直线与坐标轴围成的三角形的面积.
试题解析:
(1)将A(-3,-2),B(0,4)分别代入y=kx+b得 ,解得: ,
∴一次函数的解析式为:y=2x+4.
(2)在y=2x+4中,当y=-5时,2x+4=-5,解得x=-4.5;
(3)设直线和x轴交于点C,
∵在y=2x+4中,当y=0时,2x+4=0,解得x=-2,
∴点C(-2,0),
∴OC=2,
又∵OB=4,
∴S△OBC=OBOC=.
点睛:一次函数图象与坐标轴围成的三角形就是以图象与两坐标轴的交点和原点为顶点的直角三角形,因此只需由解析式求出图象与两坐标轴的交点坐标即可求此三角形的面积.
题号
一
二
三
四
五
总分
得分
批阅人
服装
进价(元/件)
售价(元/件)
A
80
120
B
60
90
北京市房山区2024年九上数学开学达标检测模拟试题【含答案】: 这是一份北京市房山区2024年九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京市第八中学2024-2025学年九上数学开学统考模拟试题【含答案】: 这是一份北京市第八中学2024-2025学年九上数学开学统考模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届北京市房山区名校数学九上开学联考试题【含答案】: 这是一份2025届北京市房山区名校数学九上开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。