|试卷下载
终身会员
搜索
    上传资料 赚现金
    北京市海淀区名校2025届九上数学开学统考试题【含答案】
    立即下载
    加入资料篮
    北京市海淀区名校2025届九上数学开学统考试题【含答案】01
    北京市海淀区名校2025届九上数学开学统考试题【含答案】02
    北京市海淀区名校2025届九上数学开学统考试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市海淀区名校2025届九上数学开学统考试题【含答案】

    展开
    这是一份北京市海淀区名校2025届九上数学开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列二次根式中属于最简二次根式的是( )
    A.B.C.D.
    2、(4分)如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为( )

    A.B.C.D.
    3、(4分)已知点P(a,3+a)在第二象限,则a的取值范围是( )
    A.a<0B.a>﹣3C.﹣3<a<0D.a<﹣3
    4、(4分)如图,,,三点在正方形网格线的交点处,若将绕点逆时针旋转得到,则点的坐标为( )
    A.B.C.D.
    5、(4分)在直角坐标系中,点P(-3,3)到原点的距离是( )
    A. B.3C. 3D.6
    6、(4分)某单位组织职工开展植树活动,植树量与人数之间的关系如下表,下列说法不正确的是()
    A.参加本次植树活动共有29人B.每人植树量的众数是4
    C.每人植树量的中位数是5D.每人植树量的平均数是5
    7、(4分)估计的值应在( )
    A.2和3之间B.3和4之间C.4和5之间D.5和6之间
    8、(4分)在下列数据6,5,7,5,8,6,6中,众数是( )
    A.5B.6C.7D.8
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.
    10、(4分)在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:
    老师说:“小楠、小曼的作法都正确”
    请回答:小楠的作图依据是______;
    小曼的作图依据是______.
    11、(4分)一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20m,这名主持人现在站在A处(如图所示),则它应至少再走_____m才最理想.(可保留根号).
    12、(4分)如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是 .
    13、(4分)若﹣1的整数部分是a,小数部分是b,则代数式a2+2b的值是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部 , 颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置 , . 然后测出两人之间的距离 , 颖颖与楼之间的距离( , , 在一条直线上),颖颖的身高 , 亮亮蹲地观测时眼睛到地面的距离 . 你能根据以上测量数据帮助他们求出住宅楼的高度吗?
    15、(8分)如图,正方形ABCD中,O是对角线AC、BD的交点,过点O作OE⊥OF,分别交AB、BC于E. F.
    (1)求证:△OEF是等腰直角三角形。
    (2)若AE=4,CF=3,求EF的长。
    16、(8分)如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).
    (1)求点D的坐标.
    (2)求直线BC的解析式.
    (3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
    17、(10分)某种商品的定价为每件20元,商场为了促销,决定如果购买5件以上,则超过5件的部分打7折.
    (1)求购买这种商品的货款y (元)与购买数量x (件)之间的函数关系;
    (2)当x=3,x=6时,货款分别为多少元?
    18、(10分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:
    已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.
    求该一次函数的解析式;
    当华氏温度14℉时,求其所对应的摄氏温度.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如果,那么的值是___________.
    20、(4分)一个多边形的各内角都相等,且内外角之差的绝对值为60°,则边数为__________.
    21、(4分)一天,小明放学骑车从学校出发路过新华书店买了一本课外书再骑车回家,他所行驶的路程s与时间t的关系如图,则经18分钟后,小明离家还有____千米.
    22、(4分)在菱形ABCD中,M是BC边上的点(不与B,C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为,,则关于的函数解析式是_______________________________.
    23、(4分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出
    ①AB=__________;
    ②CD=_______________(提示:过A作CD的垂线);
    ③BC=_______________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)计算:;(2)已知,,求的值
    25、(10分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).
    (1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;
    (2)比较购买同样多的笔时,哪种方式更便宜;
    (3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.
    26、(12分)已知y-2与x+3成正比例,且当x=-4时,y=0,求当x=-1时,y的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    利用最简二次根式定义判断即可.
    【详解】
    A、,是最简二次根式,符合题意;
    B、,不是最简二次根式,不符合题意;
    C、,不是最简二次根式,不合题意;
    D、,,不是最简二次根式,不合题意.
    故选A.
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
    2、C
    【解析】
    把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.
    【详解】
    解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,
    在Rt△ACB′,
    所以它爬行的最短路程为13cm.
    故选:C.
    本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
    3、C
    【解析】
    根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.
    【详解】
    解:∵点P(a,3+a)在第二象限,
    ∴,
    解得﹣3<a<1.
    故选:C.
    本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    4、C
    【解析】
    根据旋转的性质可得AC=AC′,求出AC的长,得到C′的纵坐标,再根据点A的横坐标可得结果.
    【详解】
    解:如图,AC=,
    由于旋转,
    ∴AC′=,
    ∵A(1,1),
    ∴C′(1,+1),
    故选C.
    本题考查了旋转的性质,解题的关键是根据旋转的性质得到AC=AC′.
    5、B
    【解析】
    根据勾股定理可求点P(-3,3)到原点的距离.
    【详解】
    解:点P(-3,3)到原点的距离为=3,
    故选:B.
    本题考查勾股定理,熟练掌握勾股定理是解题的关键.
    6、D
    【解析】
    分析:A.将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.7棵,结论D错误.此题得解.
    详解:A.∵4+10+8+6+1=29(人),∴参加本次植树活动共有29人,结论A正确;
    B.∵10>8>6>4>1,∴每人植树量的众数是4棵,结论B正确;
    C.∵共有29个数,第15个数为5,∴每人植树量的中位数是5棵,结论C正确;
    D.∵(3×4+4×10+5×8+6×6+7×1)÷29≈4.7(棵),∴每人植树量的平均数约是4.7棵,结论D不正确.
    故选D.
    点睛:本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.
    7、B
    【解析】
    找到被开方数5前后的完全平方数4和9进行比较,可得答案
    【详解】
    解:∵,且


    本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.
    8、B
    【解析】
    根据众数的概念进行解答即可.
    【详解】
    在数据6,5,7,5,8,6,6中,数据6出现了3次,出现次数最多,
    所以这组数据的众数是6,
    故选B.
    本题考查了众数,明确众数是指一组数据中出现次数最多的数据是解题的关键.众数一定是这组数据中的数,可以不唯一.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(22018,0)
    【解析】
    根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.
    【详解】
    根据题意得:
    A1和B1的横坐标为1,
    把x=1代入y=x得:y=1
    B1的纵坐标为1,
    即A1B1=1,
    ∵△B1A1A2为等腰直角三角形,
    ∴A1A2=1,
    A2和B2的横坐标为1+1=2,
    同理:A3和B3的横坐标为2+2=4=22,
    A4和B4的横坐标为4+4=8=23,

    依此类推,
    A2019的横坐标为22018,纵坐标为0,
    即点A2019的坐标为(22018,0),
    故答案为:(22018,0).
    此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.
    10、同位角相等,两直线平行或垂直于同一直线的两条直线平行 内错角相等,两直线平行
    【解析】
    由平行线的判定方法即可得到小楠、小曼的作图依据.
    【详解】
    解:∵∠B=∠D=90°,
    ∴AB//CD(同位角相等,两直线平行);
    ∵∠ABC=∠DCB=90°,
    ∴AB//CD(内错角相等,两直线平行),
    故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.
    本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    11、(30﹣10)
    【解析】
    AB的黄金分割点有两个,一种情况是ACBC ,当AC【详解】
    如图所示:
    则,即(20−AC):20=(−1):2,
    解得AC=30−10.
    ∴他应至少再走30−10米才最理想,
    故答案为:30−10.
    本题考查黄金分割的知识,熟练掌握黄金分割比例即可解答.
    12、.
    【解析】
    试题分析:首先连接DB,DE,设DE交AC于M,连接MB,DF.证明只有点F运动到点M时,EF+BF取最小值,再根据菱形的性质、勾股定理求得最小值.
    试题解析:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,
    ∵四边形ABCD是菱形,
    ∴AC,BD互相垂直平分,
    ∴点B关于AC的对称点为D,
    ∴FD=FB,
    ∴FE+FB=FE+FD≥DE.
    只有当点F运动到点M时,取等号(两点之间线段最短),
    △ABD中,AD=AB,∠DAB=120°,
    ∴∠HAD=60°,
    ∵DH⊥AB,
    ∴AH=AD,DH=AD,
    ∵菱形ABCD的边长为4,E为AB的中点,
    ∴AE=2,AH=2,
    ∴EH=4,DH=,
    在RT△EHD中,DE=
    ∴EF+BF的最小值为.
    【考点】1.轴对称-最短路线问题;2.菱形的性质.
    13、1+2
    【解析】
    先估算出的范围,再求出a,b的值,代入即可.
    【详解】
    解:∵16<23<25,
    ∴1<<5,
    ∴3<﹣1<1.
    ∴a=3,b=﹣1.
    ∴原式=32+2(﹣1)=9+2﹣8=1+2.
    故答案为:1+2.
    本题考查的是估算无理数的大小,熟练掌握无理数的性质是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、20.8m.
    【解析】
    试题分析:过A作CN的平行线交BD于E,交MN于F,由相似三角形的判定定理得出△ABE∽△AMF,再由相似三角形的对应边成比例即可得出MF的长,进而得出结论.
    试题解析:过A作CN的平行线交BD于E,交MN于F.
    由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,
    ∠AEB=∠AFM=90°.
    又∵∠BAE=∠MAF,
    ∴△ABE∽△AMF.
    ∴,
    即:,
    解得MF=20m.
    ∴MN=MF+FN=20+0.8=20.8m.
    ∴住宅楼的高度为20.8m.
    考点: 相似三角形的应用.
    15、(1)见解析;(2)5.
    【解析】
    (1)根据正方形的性质可得∠ABO=∠ACF=45°,OB=OC,∠BOC=90°,再根据同角的余角相等求出∠EOB=∠FOC,然后利用“角边角”证明△BEO和△CFO全等,根据全等三角形对应边相等可得OE=OF,从而得证;
    (2)根据全等三角形对应边相等可得BE=CF,再根据正方形的四条边都相等求出AE=BF,再利用勾股定理列式进行计算即可得解.
    【详解】
    (1)证明:∵四边形ABCD为正方形,
    ∴∠ABO=∠ACF=45∘,OB=OC,∠BOC=90∘,
    ∴∠FOC+∠BOF=90∘,
    又∵OE⊥OF,
    ∴∠EOF=90∘,
    ∴∠EOB+∠BOF=90∘,
    ∴∠EOB=∠FOC,
    在△BEO和△CFO中,

    ∴△BEO≌△CFO(ASA),
    ∴OE=OF,
    又∵∠EOF=90∘,
    ∴△DEF是等腰直角三角形;
    (2)解∵△BEO≌△CFO(已证),
    ∴BE=CF=3,
    又∵四边形ABCD是正方形,
    ∴AB=BC,
    ∴AB−BE=BC−CF,
    即AE=BF=4,
    在Rt△BEF中,EF= = =5.
    此题考查全等三角形的判定与性质,正方形的性质,解题关键在于得到∠ABO=∠ACF=45°,OB=OC,∠BOC=90°
    16、(1)D(4,7)(2)y=(3)详见解析
    【解析】
    试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;
    (2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;
    (3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C的对称点时,△PCD为等腰三角形,然后求解即可.
    试题解析:(1)x2﹣7x+12=0,
    解得x1=3,x2=4,
    ∵OA>OB,
    ∴OA=4,OB=3,
    过D作DE⊥y于点E,
    ∵正方形ABCD,
    ∴AD=AB,∠DAB=90°,
    ∠DAE+∠OAB=90°,
    ∠ABO+∠OAB=90°,
    ∴∠ABO=∠DAE,
    ∵DE⊥AE,
    ∴∠AED=90°=∠AOB,
    ∵DE⊥AE
    ∴∠AED=90°=∠AOB,
    ∴△DAE≌△ABO(AAS),
    ∴DE=OA=4,AE=OB=3,
    ∴OE=7,
    ∴D(4,7);
    (2)过点C作CM⊥x轴于点M,
    同上可证得△BCM≌△ABO,
    ∴CM=OB=3,BM=OA=4,
    ∴OM=7,
    ∴C(7,3),
    设直线BC的解析式为y=kx+b(k≠0,k、b为常数),
    代入B(3,0),C(7,3)得,,
    解得,
    ∴y=x﹣;
    (3)存在.
    点P与点B重合时,P1(3,0),
    点P与点B关于点C对称时,P2(11,6).
    考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数
    17、 (1)y= (2)114
    【解析】
    试题分析:(1)根据题目条件:如果购买5件以上,则超过5件的部分打7折即可得到y (元)与购买数量x (件)之间的函数关系;
    (2)把x=3,x=6分别代入(1)中的函数关系式即可求出贷款数.
    试题解析:
    (1)根据商场的规定,
    当0<x≤5时,y=20x,
    当x>5时,y=20×5+(x﹣5)×20×0.7=100+14(x﹣5),
    所以,货款y (元)与购买数量x (件)之间的函数关系是
    Y= (x是正整数);
    (2)当x=3时,y=20×3=60 (元)
    当x=6时,y=100+14×(6﹣5)=114 (元).
    18、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.
    【解析】
    分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;
    (2)把 y=14代入(1)中求得的函数关系式求出x的值即可.
    详解:(1)设一次函数表达式为y=kx+b(k≠0).
    由题意,得,解得.
    ∴一次函数的表达式为y=1.8x+1.
    (2)当y=14时,代入得14=1.8x+1,解得x=-2.
    ∴华氏温度14℉所对应的摄氏温度是-2℃.
    点睛:本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键. 利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式;②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由得到再代入所求的代数式进行计算.
    【详解】
    ∵,
    ∴,
    ∴,
    故答案为:.
    此题考查分式的求值计算,根据已知条件求出m与n的等量关系是解题的关键.
    20、3或1
    【解析】
    分别表示多边形的每一个内角及与内角相邻的外角,根据题意列方程求解即可.
    【详解】
    解:因为:多边形的内角和为,又每个内角都相等,
    所以 :多边形的每个内角为,
    而多边形的外角和为,由多边形的每个内角都相等,则每个外角也都相等,
    所以多边形的每个外角为,
    所以,
    所以,所以或
    解得:,经检验符合题意.
    故答案为:3或1.
    本题考查的是多边形的内角和与外角和,多边形的一个内角与相邻的外角互补,掌握相关的性质是解题的关键.
    21、0.1
    【解析】
    根据待定系数法确定函数关系式,进而解答即可.
    【详解】
    解:设当15≤t≤20时,s关于t的函数关系式为s=kt+b,
    把(15,2)(20,3.5)代入s=kt+b,可得:,
    解得:,
    所以当15≤t≤20时,s关于t的函数关系式为s=0.3t﹣2.5,
    把t=18代入s=0.3t﹣2.5中,可得:s=2.9,
    3.5﹣2.9=0.1,
    答:当t=18时,小明离家路程还有0.1千米.
    故答案为0.1.
    本题考查了一次函数的图象的性质的运用,行程问题的数量关系速度=路程÷时间的运用,解答时理解清楚函数图象的数据的含义是关键.
    22、
    【解析】
    首先根据菱形的性质得出∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC,进而得出∠BAM,然后根据对称性得出∠AND=∠AND==180°-,分情况求解即可.
    【详解】
    ∵菱形ABCD中,AB=AM,
    ∴∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC
    ∴∠ABC+∠BAD=180°,
    ∴∠BAD=180°-
    ∵AB=AM,
    ∴∠AMB=∠ABC=
    ∴∠BAM=180°-∠ABC-∠AMB=180°-2
    连接BN、AN,如图:
    ∵点B关于直线AM对称的点是N,
    ∴AN=AB,∠MAN=∠BAM=180°-2,即∠BAN=2∠BAM=360°-4
    ∴AN=AD,∠DAN=∠BAD-∠BAN=180°--(360°-4)=3-180°
    ∴∠AND=∠AND==180°-
    ∵M是BC边上的点(不与B,C两点重合),


    若,即时,
    ∠CDN=∠ADC-∠AND=,即;
    若即时,
    ∠CDN=∠AND-∠ADC =,即
    ∴关于的函数解析式是
    故答案为:.
    此题主要考查菱形的性质与一次函数的综合运用,熟练掌握,即可解题.
    23、1 6 2
    【解析】
    根据图1和图2得当t=1时,点P到达A处,即AB=1;当S=12时,点P到达点D处,即可求解.
    【详解】
    ①当t=1时,点P到达A处,即AB=1.
    故答案是:1;
    ②过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,
    ∵AC=AD,
    ∴DE=CE=,
    ∴CD=6,
    故答案是:6;
    ③当S=12时,点P到达点D处,则S=CD•BC=(2AB)•BC=1×BC=12,
    则BC=2,
    故答案是:2.
    考查了动点问题的函数图象,注意分类讨论的思想、函数的知识和等腰三角形等的综合利用,具有很强的综合性.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)11.
    【解析】
    (1)根据实数的性质进行化简即可求解;(2)根据完全平方公式与平方差公式即可求解.
    【详解】
    解:(1)原式;
    (2)
    此题主要考查整式的运算,解题的关键是熟知实数的性质及乘法公式的应用.
    25、(1)y甲=5x+60,y乙=4.5x+72;(2)当购买笔数大于24支时,乙种方式便宜;当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以;当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
    【解析】分析:(1)根据购买的费用等于书包的费用+笔的费用就可以得出结论;
    (2)由(1)的解析式,分情 y甲>y乙时,况y甲=y乙时和y甲<y乙时分别建立不等式和方程讨论就可以求出结论;
    (3)由条件分析可以得出用一种方式购买选择甲商场求出费用,若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用为y,再根据一次函数的性质就可以求出结论.
    详解:(1)由题意,得:
    y甲=20×4+5(x﹣4)=5x+60,y乙=90%(20×4+5x)=4.5x+72;
    (2)由(1)可知 当 y甲>y乙时
    5x+60>4.5x+72,解得:x>24,即当购买笔数大于24支时,乙种方式便宜.
    当 y甲=y乙时,5x+60=4.5x+72
    解得:x=24,即当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以.
    当 y甲<y乙时,5x+60<4.5x+72,解得:x<24,即当购买笔数大于4支而小于24支时,甲种方式便宜;
    (3)用一种方法购买4个书包,12支笔时,由12<24,则选甲种方式 需支出
    y=20×4+8×5=120(元)
    若两种方法都用 设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用
    y=20 x+90%〔20(4﹣x)+5(12﹣x)〕(0<x≤4)
    y=﹣2.5 x+126
    由k=﹣2.5<0则y随x增大而减小,即当x=4时 y最小=116(元)
    综上所述:用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.
    点睛:本题考查了一次函数的解析式的运用,分类讨论的运用及不等式和方程的解法的运用,一次函数的性质的运用,解答时先表示出两种购买方式的解析式是解答第二问的关键,解答第三问灵活运用一次函数的性质是难点.
    26、2.
    【解析】
    利用正比例函数的定义,设y-1=k(x+3),然后把已知的对应值代入求出k得到y与x之间的函数关系式;计算自变量为-1对应的y的值即可
    【详解】
    由题意,设 y-1=k(x+3)(k≠0),
    得:0-1=k(-4+3).
    解得:k=1.
    所以当x=-1时,y=1(-1+3)+1=2.
    即当x=-1时,y的值为2.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.
    题号





    总分
    得分
    植树量(棵)
    3
    4
    5
    6
    7
    人数
    4
    10
    8
    6
    1
    摄氏温度(℃)

    0
    10

    华氏温度(℉)

    32
    50

    相关试卷

    北京市海淀区清华附中2024年九上数学开学质量跟踪监视试题【含答案】: 这是一份北京市海淀区清华附中2024年九上数学开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】: 这是一份北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京市昌平区名校数学九上开学统考试题【含答案】: 这是一份2025届北京市昌平区名校数学九上开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map