终身会员
搜索
    上传资料 赚现金
    华师版 初二数学上册 幂的运算复习三练习 (答案)
    立即下载
    加入资料篮
    华师版 初二数学上册  幂的运算复习三练习 (答案)01
    华师版 初二数学上册  幂的运算复习三练习 (答案)02
    华师版 初二数学上册  幂的运算复习三练习 (答案)03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    华师版 初二数学上册 幂的运算复习三练习 (答案)

    展开
    这是一份华师版 初二数学上册 幂的运算复习三练习 (答案),共17页。

    初二数学 幂的运算复习三一.填空题(共54小题)1.ax=2,ay=3,则ax+y的值为    .2.已知am=4,an=7,求am+n的值为    .3.计算:已知am=3,an=4,则am+n的值为    .4.am=2,an=3,则am+n=   .5.已知3a=4,3b=5,则3a+b=   .6.若2x=3,2y=6,则2x+y=   .7.已知a4•am﹣1=a9,则m=   .8.若3x+y﹣4=0,则23x•2y的结果是    .9.若xm﹣2•x2m=x4,则m2﹣1=   .10.如果2×82x×16x=221,那么x的值是    .11.已知23×8=4n,则n=   .12.若2x=5,2y=3,则22x+y=   .13.若8m+2=212,则m=   .14.已知:m+2n﹣3=0,则2m•4n的值为   .15.如果4m×8m=225,那么m=   .16.已知10a=20,100b=50,则a+2b+6的值是    .17.已知am=3,an=2,则am+3n=   .18.若am=2,an=5,则a2m+n=   .19.若2a+3b﹣2=0,则9a×27b的值为    .20.已知x+4y﹣3=0,则2x•16y的值为   .21.已知:m+2n﹣3=0,则3m•9n的值为    .22.若3m=5,9n=4,则3m+2n=   .23.若m+3n-1=0,则3m•27n=   .24.若am=4,an=3,则a2m+n的值为    .25.计算:(﹣8)2024×0.1252025=   .26.42020×(﹣0.25)2021=   .27.计算:=   .28.计算:=   .29.计算:(﹣4)2022×(﹣0.25)2023=   .30.计算:=   .31.若3m=4,3n=5,则3m﹣2n的值为    .32.若xm=3,xn=2,则x2m+3n=   •33.已知9m=3,27n=4,则32m+3n=   .34.已知am=3,bm=2,则(ab)2m=   .35.试比较35555,44444,53333三个数的大小,用“>”将它们连接起来:   .36.已知a=244,b=333,c=522,d=611,则a,b,c,d从小到大的顺序是   .(用“<”连接)37.已知a=212,b=38,c=54,则a,b,c的大小关系是   .38.已知a=230,b=320,则a    b(填“>”、“<”或“=”).39.已知a=1631,b=841,c=461,则a,b,c的大小关系是    (用<号连接).40.若3m=6,3n=2,则32m﹣3n+1=   .41.已知xm=6,xn=3,则x2m﹣n的值为   .42.已知am=3,an=9,则a3m﹣n=   .43.已知3a=4,3b=5,则32a﹣b的值为    .44.若5x=18,5y=3,则5x﹣2y=   .45.若3m=2,3n=5,则32m﹣3n=   .46.若2m=3,4n=8,则23m﹣2n﹣3的值是    .47.已知x﹣3y+2=0,则2x+y•4y﹣x=   .48.已知5x=3,5y=2,则52x﹣3y=   .49.已知3x=6,3y=4,则33x﹣2y﹣1的值等于    .50.已知x+2y﹣3=0,则3x•9y=   .51.若2x﹣5y﹣3=0,则4x÷32y的值为   .52.已知x﹣3y+2=0,则2x+y•4y﹣x=   .53.已知2a=5,2b=6,2c=30,那么a、b、c之间满足的等量关系是    .54.若5x﹣3y﹣2=0,则25x÷23y=   .二.解答题(共6小题)55.计算:(1)y•(﹣y)2•y3. (2)﹣(x﹣y)•(y﹣x)2•(y﹣x)3.56.计算:(1)(﹣m)•(﹣m)2•(﹣m)3; (2)(m﹣n)•(n﹣m)3•(n﹣m)4.57.计算:(1)(﹣x2)•x4+(﹣x2)3; (2)(a﹣b)2•(b﹣a)3•(a﹣b).58.(1)已知am=2,an=5,求a2m+n的值;(2)如果2÷8x•16x=25,求x的值.59.已知3a=4,3b=10,3c=16.(1)求3a+b的值;(2)求32a﹣c的值.60.一般的,若ax=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=logaN,比如指数式23=8可以转化为对数式3=log28,对数式2=log636可转化为指数式62=36,根据以上材料,解决下列问题:(1)计算:log24=   ,log216=   ,log264=   ;(2)观察(1),猜想:logaM+logaN=   (a>0且a≠1,M>0,N>0);(3)已知loga3=5,求loga9的值(a>0且a≠1).初二数学 幂的运算复习三参考答案与试题解析一.填空题(共54小题)1.ax=2,ay=3,则ax+y的值为  6 .【解答】解:∵ax=2,ay=3,∴ax+y=ax•ay,=ax•ay,=2×3,=6.故答案为:6.2.已知am=4,an=7,求am+n的值为  28 .【解答】解:∵am=4,an=7,∴am+n=am•an=4×7=28,故答案为:28.3.计算:已知am=3,an=4,则am+n的值为  12 .【解答】解:∵am=3,an=4,∴am+n=am•an=3×4=12,故答案为:12.4.am=2,an=3,则am+n= 6 .【解答】解:∵am=2,an=3,∴am•an=am+n=2×3=6.故答案为:6.5.已知3a=4,3b=5,则3a+b= 20 .【解答】解:∵3a=4,3b=5,∴3a+b=3a×3b=4×5=20.故答案为:20.6.若2x=3,2y=6,则2x+y= 18 .【解答】解:2x+y=2x•2y=3×6=18.故答案为:18.7.已知a4•am﹣1=a9,则m= 6 .【解答】解:∵a4•am﹣1=a9,∴4+m﹣1=9,解得:m=6,故答案为:6.8.若3x+y﹣4=0,则23x•2y的结果是  16 .【解答】解:∵3x+y﹣4=0,∴3x+y=4,∴23x•2y=23x+y=24=16.故答案为:16.9.若xm﹣2•x2m=x4,则m2﹣1= 3 .【解答】解:∵xm﹣2⋅x2m=xm﹣2+2m=x4,∴3m﹣2=4,解得:m=2,∴m2﹣1=22﹣1=3.故答案为:3.10.如果2×82x×16x=221,那么x的值是  2 .【解答】解:2×82x×16x=221,2×(23)2x×(24)x=221,2×26x×24x=221,21+6x+4x=221,21+10x=221,∴1+10x=21,解得:x=2.故答案为:2.11.已知23×8=4n,则n= 3 .【解答】解:∵23×8=4n,∴23•23=(22)n,即26=22n,∴2n=6,解得n=3.故答案为:3.12.若2x=5,2y=3,则22x+y= 75 .【解答】解:∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75.故答案为:75.13.若8m+2=212,则m= 2 .【解答】解:∵8m+2=212,(23)m+2=212,23m+6=212,∴3m+6=12,3m=6,m=2,故答案为:2.14.已知:m+2n﹣3=0,则2m•4n的值为 8 .【解答】解:由m+2n﹣3=0可得m+2n=3,∴2m•4n=2m•22n=2m+2n=23=8.故答案为:8.15.如果4m×8m=225,那么m= 5 .【解答】解:∵4m×8m=225,∴22m×23m=225,则有22m+3m=225,∴2m+3m=25,解得:m=5.故答案为:5.16.已知10a=20,100b=50,则a+2b+6的值是  9 .【解答】解:∵10a=20,100b=50,∴10a+2b+6=10a•(102)b•106=10a•100b•106=20×50×106=103×106=109,∴a+2b+6=9.故答案为:9.17.已知am=3,an=2,则am+3n= 24 .【解答】解:∵am=3,an=2,∴am+3n=am•a3n=am•(an)3=3×23=3×8=24.故答案为:24.18.若am=2,an=5,则a2m+n= 20 .【解答】解:∵am=2,an=5,∴原式=(am)2×an=20,故答案为:2019.若2a+3b﹣2=0,则9a×27b的值为  9 .【解答】解:∵2a+3b﹣2=0,∴2a+3b=2,∴9a×27b=(32)a×(33)b=32a×33b=32a+3b=32=9,故答案为:9.20.已知x+4y﹣3=0,则2x•16y的值为 8 .【解答】解:∵x+4y﹣3=0,∴x+4y=3,∴2x•16y=2x•24y=2x+4y=23=8.故答案为:8.21.已知:m+2n﹣3=0,则3m•9n的值为  27 .【解答】解:∵m+2n﹣3=0,∴m+2n=3,∴3m•9n=3m•(32)n=3m•32n=3m+2n=33=27,故答案为:27.22.若3m=5,9n=4,则3m+2n= 20 .【解答】解:当3m=5,9n=4时,3m+2n=3m×32n=3m×9n=5×4=20.故答案为:20.23.若m+3n+1=0,则3m•27n= 3 .【解答】解:∵m+3n-1=0,∴m+3n=1,∴3m•27n=3m•(33)n=3m•33n=3m+3n=31=3故答案为:3.24.若am=4,an=3,则a2m+n的值为  48 .【解答】解:∵am=4,an=3,∴a2m+n=a2m⋅an=(am)2⋅an=42×3=48,故答案为:48.25.计算:(﹣8)2024×0.1252025= 0.125 .【解答】解:(﹣8)2024×0.1252025=(﹣8×0.125)2024×0.125=(﹣1)2024×0.125=1×0.125=0.125,故答案为:0.125.26.42020×(﹣0.25)2021=  .【解答】解:42020×(﹣0.25)2021=42020×(﹣0.25)2020×()=42020×()2020×()===1×=.故答案为:.27.计算:= 2 .【解答】解:=[(﹣2)×]2023×(﹣2)=(﹣1)2023×(﹣2)=﹣1×(﹣2)=2.故答案为:2.28.计算:=  .【解答】解:原式=====,故答案为:.29.计算:(﹣4)2022×(﹣0.25)2023= ﹣0.25 .【解答】解:(﹣4)2022×(﹣0.25)2023=(﹣4)2022×(﹣0.25)2022×(﹣0.25)=(﹣4×0.25)2022×(﹣0.25)=(﹣1)2022×(﹣0.25)=﹣0.25.故答案为:﹣0.25.30.计算:=  .【解答】解:原式=()2024×()2023=×()2023×()2023=×(×)2023=×12023=.故答案为:.31.若3m=4,3n=5,则3m﹣2n的值为   .【解答】解:∵3m=3,3n=5,∴3m﹣2n=3m÷32n=3m÷(3n)2=4÷52=,故答案为:.32.若xm=3,xn=2,则x2m+3n= 72 •【解答】解:∵xm=3,xn=2,∴x2m+3n=(xm)2×(xn)3=32×23=72.故答案为:72.33.已知9m=3,27n=4,则32m+3n= 12 .【解答】解:∵9m=3,27n=4,∴32m+3n=32m×33n=(32)m×(33)n=9m×27n=3×4=12,故答案为:12.34.已知am=3,bm=2,则(ab)2m= 36 .【解答】解:∵am=3,bm=2,∴(ab)2m=(ambm)2=(3×2)2=36,故答案为:36.35.试比较35555,44444,53333三个数的大小,用“>”将它们连接起来: 44444>35555>53333 .【解答】解:∵35555=(35)1111=2431111,44444=(44)1111=2561111,53333=(53)1111=1251111,而2561111>2431111>1251111,∴44444>35555>53333.故答案为:44444>35555>53333.36.已知a=244,b=333,c=522,d=611,则a,b,c,d从小到大的顺序是 d<a<c<b .(用“<”连接)【解答】解:∵a=244=(24)11=1611,b=333=(33)11=2711,c=522=(52)11=2511,d=611,而611<1611<2511<2711,∴d<a<c<b.故答案为:d<a<c<b.37.已知a=212,b=38,c=54,则a,b,c的大小关系是 c<a<b .【解答】解:∵a=212=(23)4=84,b=38=(32)4=94,c=54,而54<84<94,∴c<a<b,故答案为:c<a<b.38.已知a=230,b=320,则a  < b(填“>”、“<”或“=”).【解答】解:∵a=230=(23)10=810,b=320=(32)10=910,∴a<b,故答案为:<.39.已知a=1631,b=841,c=461,则a,b,c的大小关系是  c<b<a (用<号连接).【解答】解:a=1631=(24)31=2124;b=841=(23)41=2123;c=461=(22)61=2122;∵124>123>122,∴21 2 4>21 2 3>21 2 2,即c<b<a.故答案为:c<b<a.40.若3m=6,3n=2,则32m﹣3n+1=  .【解答】解:32m﹣3n+1=32m÷33n×3,=(3m)2÷(3n)3×3,因为3m=6,3n=2,所以原式=,故答案为:.41.已知xm=6,xn=3,则x2m﹣n的值为 12 .【解答】解:x2m﹣n=(xm)2÷xn=36÷3=12.故答案为:12.42.已知am=3,an=9,则a3m﹣n= 3 .【解答】解:a3m﹣n=a3m÷an=(am)3÷an=33÷9=27÷9=3,故答案为:3.43.已知3a=4,3b=5,则32a﹣b的值为   .【解答】解:32a﹣b=32a÷3b=(3a)2÷3b,∵3a=4,3b=5,∴原式=,故答案为:.44.若5x=18,5y=3,则5x﹣2y= 2 .【解答】解:原式====2.故答案为:2.45.若3m=2,3n=5,则32m﹣3n=  .【解答】解:32m﹣3n=32m÷33n=(3m)2÷(3n)3=22÷53=4÷125=.故答案为:.46.若2m=3,4n=8,则23m﹣2n﹣3的值是   .【解答】解:∵2m=3,4n=(22)n=22n=8,∴23m﹣2n﹣3=23m÷22n÷23=(2m)3÷22n÷23=33÷8÷8=,故答案为:.47.已知x﹣3y+2=0,则2x+y•4y﹣x= 4 .【解答】解:由x﹣3y+2=0得x﹣3y=﹣2,∴3y﹣x=2,∴2x+y•4y﹣x=2x+y•22y﹣2x=2x+y+2y﹣2x=23y﹣x=22=4.故答案为:4.48.已知5x=3,5y=2,则52x﹣3y=  .【解答】解:∵5x=3,5y=2,∴52x﹣3y=(5x)2÷(5y)3=32÷23=9÷8=.49.已知3x=6,3y=4,则33x﹣2y﹣1的值等于  4.5 .【解答】解:∵3x=6,3y=4,∴(3x)3=33x=216,(3y)2=y2y=16,∴33x﹣2y﹣1=33x÷32y÷3=216÷16÷3=4.5.故答案为:4.5.50.已知x+2y﹣3=0,则3x•9y= 27 .【解答】解:∵x+2y﹣3=0,∴x+2y=3,∵3x•9y=3x•(32)y=3x+2y,∴3x•9y=33=27.故答案为:27.51.若2x﹣5y﹣3=0,则4x÷32y的值为 8 .【解答】解:∵2x﹣5y﹣3=0,∴2x﹣5y=3,∴4x÷32y=22x÷25y=22x﹣5y=23=8.故答案为:8.52.已知x﹣3y+2=0,则2x+y•4y﹣x= 4 .【解答】解:由x﹣3y+2=0得x﹣3y=﹣2,∴3y﹣x=2,∴2x+y•4y﹣x=2x+y•22y﹣2x=2x+y+2y﹣2x=23y﹣x=22=4.故答案为:453.已知2a=5,2b=6,2c=30,那么a、b、c之间满足的等量关系是  a+b=c .【解答】解:∵5×6=30,∴2a•2b=2c,即2a+b=2c,那么a+b=c,故答案为:a+b=c.54.若5x﹣3y﹣2=0,则25x÷23y= 4 .【解答】解:∵5x﹣3y=2,∴原式=25x﹣3y=22=4,故答案为:4.二.解答题(共6小题)55.计算:(1)y•(﹣y)2•y3.(2)﹣(x﹣y)•(y﹣x)2•(y﹣x)3.【解答】解:(1)原式=y•y2•y3=y1+2+3=y6;(2)原式=(y﹣x)•(y﹣x)2•(y﹣x)3=(y﹣x)1+2+3=(y﹣x)6.56.计算:(1)(﹣m)•(﹣m)2•(﹣m)3;(2)(m﹣n)•(n﹣m)3•(n﹣m)4.【解答】解:(1)(﹣m)•(﹣m)2•(﹣m)3=(﹣m)1+2+3=(﹣m)6=m6;(2)(m﹣n)•(n﹣m)3•(n﹣m)4=(m﹣n)•[﹣(m﹣n)3]•(m﹣n)4=﹣(m﹣n)8.57.计算:(1)(﹣x2)•x4+(﹣x2)3;(2)(a﹣b)2•(b﹣a)3•(a﹣b).【解答】解:(1)(﹣x2)•x4+(﹣x2)3=﹣x6+(﹣x6)=﹣x6﹣x6=﹣2x6;(2)(a﹣b)2•(b﹣a)3•(a﹣b)=(a﹣b)2•[﹣(a﹣b)]3•(a﹣b)=(a﹣b)2•[﹣(a﹣b)3]•(a﹣b)=﹣(a﹣b)6.58.(1)已知am=2,an=5,求a2m+n的值;(2)如果2÷8x•16x=25,求x的值.【解答】解:(1)∵am=2,an=5,∴a2m+n=a2m×an=(am)2×an=22×5=20.(2)∵2÷8x•16x=2÷(23)x•(24)x=2÷23x×24x=21﹣3x+4x=21+x=25,∴1+x=5.∴x=4.59.已知3a=4,3b=10,3c=16.(1)求3a+b的值;(2)求32a﹣c的值.【解答】解:(1)∵3a=4,3b=10,∴3a+b=3a•3b=4×10=40;(2)∵3a=4,3c=16,∴32a﹣c=(3a)2÷3c=42÷16=1.60.一般的,若ax=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=logaN,比如指数式23=8可以转化为对数式3=log28,对数式2=log636可转化为指数式62=36,根据以上材料,解决下列问题:(1)计算:log24= 2 ,log216= 4 ,log264= 6 ;(2)观察(1),猜想:logaM+logaN= logaMN (a>0且a≠1,M>0,N>0);(3)已知loga3=5,求loga9的值(a>0且a≠1).【解答】解:(1)∵22=4,24=16,26=64,∴log24=2;log216=4;log264=6故答案为:2;4;6;(2)设logaM=x,logaN=y,则ax=M,ay=N,∴M•N=ax•ay=ax+y,根据对数的定义,x+y=logaMN,即logaM+logaN=logaMN;故答案为:logaMN.(3)由loga3=5,得a5=3,∵9=3×3=a5•a5=a10,∴根据对数的定义loga9=10.
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        华师版 初二数学上册 幂的运算复习三练习 (答案)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map