2025届云南省丽江市名校九上数学开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题是真命题的是( )
A.对角线互相垂直的四边形是菱形B.对角线相等的菱形是正方形
C.对角线互相垂直且相等的四边形是正方形D.对角线相等的四边形是矩形
2、(4分)在实数范围内有意义,则应满足的条件是( )
A.B.C.D.
3、(4分)湖州是“两山”理论的发源地,在一次学校组织的以“学习两山理论,建设生态文明”为主题的知识竞赛中,某班6名同学的成绩如下(单位:分):97,99,95,92,92,93,则这6名同学的成绩的中位数和众数分别为( )
A.93分,92分B.94分,92分
C.94分,93分D.95分,95分
4、(4分)如图,在△ABC中,DE∥BC,,DE=4,则BC的长( )
A.8B.10C.12D.16
5、(4分)从、、、这四个代数式中任意抽取一个,下列事件中为确定事件的是( )
A.抽到的是单项式B.抽到的是整式
C.抽到的是分式D.抽到的是二次根式
6、(4分)如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为( )
A.40cmB.30cmC.20cmD.10cm
7、(4分)正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,C点的坐标为( )
A.(﹣1,2)B.(2,0)C.(2,1)D.(2,﹣1)
8、(4分)如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,△ABD的面积等于18,则AB的长为( )
A.9B.12C.15D.18
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为 .
10、(4分)已知方程ax2+7x﹣2=0的一个根是﹣2,则a的值是_____.
11、(4分)若分式值为0,则的值为__________.
12、(4分)若,且,则的值是__________.
13、(4分)廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
则这10名学生周末利用网络进行学习的平均时间是________小时.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点的位置,问船向岸边移动了大约多少米?(假设绳子是直的,结果精确到0.1米,参考数据:,)
15、(8分)某学校抽查了某班级某月10天的用电量,数据如下表:
(1)这10天用电量的众数是______度,中位数是______度;
(2)求这个班级平均每天的用电量;
(3)该校共有20个班级,该月共计30天,试估计该校该月总的用电量.
16、(8分)如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E
(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.
17、(10分)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.
(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是 ;
(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;
(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.
18、(10分)如图①,正方形ABCD中,点E、F都在AD边上,且AE=FD,分别连接BE、FC,对角线BD交FC于点P,连接AP,交BE于点G;
(1)试判断AP与BE的位置关系;
(2)如图②,再过点P作PH⊥AP,交BC于点H,连接AH,分别交BE、BD于点N,M,请直接写出图②中有哪些等腰三角形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,线段AB的长为4,P为线段AB上的一个动点,△PAD和△PBC都是等腰直角三角形,且∠ADP=∠PCB=90°,则CD长的最小值是____.
20、(4分)如图1,是一个三节段式伸缩晾衣架,如图2,是其衣架侧面示意图,为衣架的墙角固定端,为固定支点,为滑动支点,四边形和四边形是菱形,且,点在上滑动时,衣架外延钢体发生角度形变,其外延长度(点和点间的距离)也随之变化,形成衣架伸缩效果,伸缩衣架为初始状态时,衣架外延长度为,当点向点移动时,外延长度为.
(1)则菱形的边长为______.
(2)如图3,当时,为对角线(不含点)上任意一点,则的最小值为______.
21、(4分)若方程的两根为,,则________.
22、(4分)如图,菱形ABCD的两条对角线长分别为6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点则PM+PN的最小值是_
23、(4分)如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5cm,AP=8cm,求△APB的周长.
25、(10分)在课外活动中,我们要研究一种四边形--筝形的性质.
定义:两组邻边分别相等的四边形是筝形(如图1).
小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.
下面是小聪的探究过程,请补充完整:
(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 ;
(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;
(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.
26、(12分)(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论;
(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,猜测MN与BM的数量关系,无需证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据菱形的判定方法、正方形的判定方法以及矩形的判定方法对各选项加以判断即可.
【详解】
A:对角线互相垂直的平行四边形是菱形,故选项错误,为假命题;
B:对角线相等的菱形是正方形,故选项正确,为真命题;
C:对角线互相垂直且相等的平行四边形是正方形,故选项错误,为假命题;
D:对角线相等的平行四边形是矩形,故选项错误,为假命题;
故选:B.
本题主要考查了菱形、正方形以及矩形的判定方法,熟练掌握相关概念是解题关键.
2、D
【解析】
根据二次根式有意义的条件解答即可.
【详解】
解:由题意得:x+1≥0,解得x≥-1,故答案为D.
本题考查了二次根式有意义的条件,即牢记二次根式有意义的条件为被开方数大于等于零是解答本题的关键.
3、B
【解析】
利用中位数和众数的定义求解即可.
【详解】
解:将这组数据按从小到大的顺序排列为:1、1、93、95、97、99,处于中间位置的数是93,95,它们的平均数是94,那么由中位数的定义可知,这组数据的中位数是94;
在这一组数据中1出现次数最多,故众数是1.
故选:B.
本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两个数的平均数.
4、C
【解析】
根据DE∥BC,于是得到△ADE∽△ABC,求得比例式,代入数据即可得到结果.
【详解】
解:∵DE∥BC,
∴△ADE∽△ABC,
∴
∵
∴
∴
∵DE=4,
∴BC=1.
故选:C.
本题考查了相似三角形的判定和性质,熟练掌握其性质定理是解题的关键.
5、D
【解析】
根据题意找出下列事件中为确定事件,掌握单项式、整式、分式、二次根式的定义以此分析选项,采用排除法得出最终正确选项.
【详解】
A. 不是单项式,错误;
B. 不是整式,错误;
C.、、不是分式,错误;
D. 、、、都是二次根式,正确.
故选D.
此题考查单项式、整式、分式、二次根式,解题关键在于掌握单项式、整式、分式、二次根式的定义.
6、A
【解析】
由菱形的性质得∠AOB=90°,根据直角三角形斜边上的中线等于斜边的一半得AB=2OM,从而可求出菱形的周长.
【详解】
∵四边形ABCD是菱形,
∴∠AOB=90°,
∵M是AB边的中点,
∴AB=2OM=10,
∴菱形ABCD的周长为10×4=1.
故选A.
本题考查了菱形的性质,直角三角形斜边中线的性质,熟练掌握菱形的对角线互相垂直,直角三角形斜边中线等于斜边的一半是解答本题的关键. 菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有两条对称轴.
7、D
【解析】
利用网格特点和旋转的性质画出正方形ABCD绕D点顺时针方向旋转90°后所得的正方形CEFD,则可得到C点的对应点的坐标.
【详解】
如图,正方形ABCD绕D点顺时针方向旋转90°后得到正方形CEFD,则C点旋转后的对应点为F(2,﹣1),
故选D.
本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.
8、B
【解析】
过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,继而利用三角形面积解答即可.
【详解】
如图,过D作DE⊥AB于E,
∵AD平分∠BAC,∠C=90°,
∴DE=DC=3,
∵△ABD的面积等于18,
∴△ABD的面积=.
∴AB=12,
故选B.
本题考查了角平分线的性质,能根据角平分线性质得出DE=CD是解此题的关键,注意:角平分线上的点到这个角两边的距离相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据题意PD=t,则PA=10-t,首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题,
【详解】
解:如图,根据题意PD=t,则PA=10−t,
∵B、E、P共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=10,
在Rt△ABP中,
∵,
∴,
∴t=2或18(舍去),
∴PD=2,
∴t=2时,B、E、P共线;
故答案为:2.
本题主要考查了矩形的性质,轴对称的性质,掌握矩形的性质,轴对称的性质是解题的关键.
10、1
【解析】
根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.
【详解】
解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则1a﹣11﹣2=0,即1a﹣16=0,
解得,a=1.
故答案是:1.
考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
11、-1
【解析】
根据分式值为0的条件进行求解即可.
【详解】
由题意得,x+1=0,
解得x=-1,
故答案为:-1.
本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.
12、-1
【解析】
根据平方差公式解答即可.
【详解】
∵x2-y2=(x+y)(x-y)=20,x+y=-2,
∴x-y=-1.
故答案为:-1.
本题考查了平方差公式,解题的关键是熟记平方差公式.
13、2.1
【解析】
依据加权平均数的概念求解可得.
【详解】
解:这10名学生周末利用网络进行学习的平均时间是:
;
故答案为:2.1.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
三、解答题(本大题共5个小题,共48分)
14、船向岸边移动了大约3.3m.
【解析】
由题意可求出CD长,在中分别用勾股定理求出AD,AB长,作差即可.
【详解】
解:∵在中,,,,
∴.
∵此人以0.5m/s的速度收绳,6s后船移动到点D的位置,
∴.
∴.
∴.
答:船向岸边移动了大约3.3m.
本题是勾股定理的应用,灵活运用勾股定理求线段长是解题的关键,
15、(1)13,13;(2)这个班级平均每天的用电量为12度;(3)估计该校该月总的用电量为7200度.
【解析】
(1)根据众数和中位数的定义进行求解;
(2)由加权平均数公式求之即可;
(3)用每班用电量的平均数×总班数×总天数求解.
【详解】
解:(1)用电量为13度的天数有3天,天数最多,所以众数是13度;将用电量从小到大排列,处在中间位置的用电量分别为13度,13度,所以中位数是13度.
(2)(度).
答:这个班级平均每天的用电量为12度.
(3)(度).
答:估计该校该月总的用电量为7200度.
此题考查的是统计表的综合运用.读懂统计表,从统计表中得到必要的信息是解决问题的关键.本题还考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.
16、(1);(1)OF= 1;(3)见解析.
【解析】
(1)在Rt△ABD中,通过解直角三角形可求出OD的长,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD的解析式;
(1)由等边三角形的性质结合三角形内角和定理,可得出∠BAE=∠CFE=30°,进而可得出∠OAF=∠OFA=30°,再利用等角对等边可得出线段OF的长;
(3)通过解含30度角的直角三角形可求出BE的长,结合BC的长可得出CE=OF=1,由OB=CO,∠BOF=∠OCE及OF=CE可证出△OBF≌△COE(SAS),再利用全等三角形的性质可得出BF=OE.
【详解】
(1)∵△OBC为等边三角形,
∴∠ABC=60°.
在Rt△ABD中,tan∠ABD=,即,
∴AD=,
∴点D的坐标是(0,).
设BD的解析式是y=kx+b(k≠0),
将B(6,0),D(0,)代入y=kx+b,得:,
解得:,
∴直线BD的解析式为.
(1)解:∵AE⊥BC,△OBC是正三角形,
∴∠BAE=∠CFE=30°,
∴∠OAF=∠OFA=30°,
∴OF=OA=1,即OF的长为1.
(3)证明:∵AB=8,∠OBC=60°,AE⊥BC,
∴BE=AB=4,
∴CE=BC-BE=6-4=1,
∴OF=CE.
在△OBF和△COE中,,
∴△OBF≌△COE(SAS),
∴BF=OE.
本题考查了等边三角形、解直角三角形、待定系数法求一次函数解析式、等腰三角形的性质、三角形内角和定理以及全等三角形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数的解析式;(1)通过角的计算,找出∠OAF=∠OFA;(3)利用全等三角形的判定定理SAS,证出△OBF≌△COE.
17、(1)EB=FD,(2)EB=FD,证明见解析;(3)不变,等于60°.
【解析】
(1)EB=FD,利用正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△AFD≌△ABE,由全等三角形的性质即可得到EB=FD;
(2)当四边形ABCD为矩形时,EB和FD仍旧相等,证明的思路同(1);
(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD不发生变化,是一定值,为60°.
【详解】
解:(1)EB=FD,
理由如下:
∵四边形ABCD为正方形,
∴AB=AD,
∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,
∴AF=AE,∠FAB=∠EAD=60°,
∵∠FAD=∠BAD+∠FAB=90°+60°=150°,
∠BAE=∠BAD+∠EAD=90°+60°=150°,
∴∠FAD=∠BAE,
在△AFD和△ABE中,
,
∴△AFD≌△ABE,
∴EB=FD;
(2)EB=FD.
证:∵△AFB为等边三角形
∴AF=AB,∠FAB=60°
∵△ADE为等边三角形,
∴AD=AE,∠EAD=60°
∴∠FAB+∠BAD=∠EAD+∠BAD,
即∠FAD=∠BAE
∴△FAD≌△BAE
∴EB=FD;
(3)解:
同(2)易证:△FAD≌△BAE,
∴∠AEB=∠ADF,
设∠AEB为x°,则∠ADF也为x°
于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,
∴∠EGD=180°﹣∠BED﹣∠EDF
=180°﹣(60﹣x)°﹣(60+x)°
=60°.
18、(1)垂直,理由见解析;(2)△ABD,△BCD是等腰△,△APH是等腰△,△PHC 是等腰△.
【解析】
(1)由题意可证△ADP≌△DPC,△AEB≌△DFC可得∠DAP=∠DCF=∠ABE,通过角的换算可证AP⊥BE.
(2)根据正方形的性质可得△ABD,△BCD是等腰△,由AP⊥PH,∠ABC=90°可得A,B,H,P四点共圆,可证△APH,△PHC是等腰△
【详解】
(1)垂直,
理由是∵四边形ABCD是正方形,
∴AD=CD=AB,∠BAD=∠CDA=90°,∠ADB=∠CDB=45°,且DP=DP,
∴△ADP≌△CDP,
∴∠DCF=∠DAP,AP=PC
又AE=DF,∠BAD=∠CDA=90°,AB=CD,
∴△ABE≌△DCF,
∴∠ABE=∠DCF,
∴∠ABE=∠DAP
∵∠ABE+∠AEB=90°,
∴∠DAP+∠AEB=90°,即∠AGE=90°,
∴AP⊥BE
(2)∵AB=BC=CD=DA
∴△ABD,△BCD是等腰△
∵AP⊥PH,∠ABC=90°
∴A,B,H,P四点共圆
∴∠PAH=∠DBC=45°
∴∠PAH=∠PHA=45°
∴PA=PH
∴△APH是等腰△
∵AP=PH,AP=PC,
∴PC=PH
∴△PHC 是等腰△.
本题考查了正方形的性质,全等三角形的性质和判定,关键是利用这些性质解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.
【解析】
设AP=x,PB=4,由等腰直角三角形得到DP与PC,然后在直角三角形DPC中利用勾股定理列出CD与x的关系,列出函数解题即可
【详解】
设AP=x,PB=4,由等腰直角三角形性质可得到DP=,CP=,又易知三角形DPC为直角三角形,所以DC2=DP2+PC2==,利用二次函数性质得到DC2的最小值为8,所以DC的最小值为,故填
本题主要考察等腰直角三角形的性质与二次函数的性质,属于中等难度题,本题关键在于能用x表示出DC的长度
20、25;
【解析】
(1)过F作于,根据等腰三角形的性质可得.
(2)作等边,等边,得到,得出,而当、、、共线时,最小,再根据,继而求出结果.
【详解】
(1)如图,过F作于,设,由题意衣架外延长度为得,
当时,外延长度为.则.
则有,
∴,
∴.
∵
∴菱形的边长为25cm
故答案为:25cm
(2)作等边,等边,
∴EM=EP, EH=EQ
∴,
∴,,
∴,
当、、、共线时,最小,
易知,
∵,
∴的最小值为.
本题考查菱形的性质,勾股定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.
21、1
【解析】
解:∵∴
∴或.∵,∴
∴
故答案为:1.
22、1
【解析】
试题分析:要求PM+PN的最小值,PM,PN不能直接求,可考虑通过作辅助线转化PN,PM的值,从而找出其最小值求解.如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,而由已知可得AB=1∴AE=BN,∵四边形ABCD是菱形,∴AE∥BN,∴四边形AENB为平行四边形,∴EN=AB=1,∴PM+PN的最小值为1.
考点:轴对称—最短路径问题
点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键
23、5cm
【解析】
根据正方形的面积可用对角线进行计算解答即可.
【详解】
解:因为正方形AECF的面积为18cm2,
所以AC==6cm,
因为菱形ABCD的面积为24cm2,
所以BD==8cm,
所以菱形的边长==5cm.
故答案为:5cm.
此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
二、解答题(本大题共3个小题,共30分)
24、 (1)∠APB=90°; (2)△APB的周长是24cm.
【解析】
【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;
(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.
【详解】(1)∵四边形是平行四边形,
∴∥ ,∥, ,
∴ ,
又∵和分别平分和,
∴ ,
∴ ;
(2) ∵平分,∥ ,
∴ ,
∴ ,同理: ,
∴ ,
在中, , ∴ ,
∴△的周长.
【点睛】本题考查了平行四边形的性质,等腰三角形的判定与性质等,熟练掌握平行四边形的性质是解题的关键.
25、(1)菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.证明见解析;(3)4.
【解析】
(1)根据筝形的定义解答即可;
(2)根据全等三角形的判定和性质证明;
(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.
【详解】
(1)∵菱形的四条边相等,
∴菱形是筝形,
故答案为:菱形;
(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.
已知:四边形ABCD是筝形,
求证:∠B=∠D,
证明:如图1,连接AC,
在△ABC和△ADC中,
,
∴△ABC≌△ADC,
∴∠B=∠D;
(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,
∵∠ABC=120°,
∴∠EBC=60°,又BC=2,
∴CE=BC×sin∠EBC=,
∴S△ABC=×AB×CE=2,
∵△ABC≌△ADC,
∴筝形ABCD的面积=2S△ABC=4.
本题考查的是筝形的定义和性质、菱形的性质、全等三角形的判定和性质,正确理解筝形的性质、熟记锐角三角函数的定义是解题的关键.
26、(1)30º,见解析.(2)
【解析】
(1)猜想:∠MBN=30°.如图1中,连接AN.想办法证明△ABN是等边三角形即可解决问题;
(2)MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.只要证明△MOP≌△BOP,即可解决问题.
【详解】
(1)猜想:∠MBN=30°.
证明:如图1中,连接AN,∵直线EF是AB的垂直平分线,
∴NA=NB,由折叠可知,BN=AB,
∴AB=BN=AN,
∴△ABN是等边三角形,
∴∠ABN=60°,
∴NBM=∠ABM=∠ABN=30°.
(2)结论:MN=BM.
折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,
折痕为MP,连接OP.
理由:由折叠可知△MOP≌△MNP,
∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,
∠MOP=∠MNP=90°,
∴∠BOP=∠MOP=90°,
∵OP=OP,
∴△MOP≌△BOP,
∴MO=BO=BM,
∴MN=BM.
本题考查翻折变换、矩形的性质、剪纸问题等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造全等三角形解决问题.
题号
一
二
三
四
五
总分
得分
时间(单位:小时)
4
3
2
l
0
人数
3
4
1
1
1
用电量/度
8
9
10
13
14
15
天数
1
1
2
3
1
2
2025届山东省九上数学开学学业水平测试模拟试题【含答案】: 这是一份2025届山东省九上数学开学学业水平测试模拟试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广东省潮州市名校九上数学开学学业水平测试试题【含答案】: 这是一份2025届广东省潮州市名校九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年云南省丽江市华坪县数学九上开学调研模拟试题【含答案】: 这是一份2024年云南省丽江市华坪县数学九上开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。