2025届陕西省宝鸡市金台区九上数学开学质量跟踪监视试题【含答案】
展开
这是一份2025届陕西省宝鸡市金台区九上数学开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各曲线中,不能表示y是x的函数的是( )
A. B. C. D.
2、(4分)使代数式有意义的x的取值范围是( )
A.B.C.且D.一切实数
3、(4分)如果,下列不等式中错误的是( )
A.B.C.D.
4、(4分)甲、乙两同学同时从学校出发,步行10千米到某博物馆,已知甲每小时比乙多走1千米,结果乙比甲晚20分钟,设乙每小时走x千米,则所列方程正确的是()
A.B.C.D.
5、(4分)如图,在平行四边形中,对角线交于点,并且,点是边上一动点,延长交于点,当点从点向点移动过程中(点与点,不重合),则四边形的变化是( )
A.平行四边形→菱形→平行四边形→矩形→平行四边形
B.平行四边形→矩形→平行四边形→菱形→平行四边形
C.平行四边形→矩形→平行四边形→正方形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形
6、(4分)不等式组的解集是
A.x≥8B.x>2C.0<x<2D.2<x≤8
7、(4分)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8,射击成绩稳定的是( )
A.甲B.乙C.甲、乙一样D.不能确定
8、(4分)如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为_____________________.
10、(4分)四边形ABCD中,AD∥BC,AD=BC,对角线AC、BD相交于点O,若CD=3cm,△BOC的周长比△AOB的周长大2cm,则四边形ABCD的周长=______cm.
11、(4分)如图,△ABO的面积为3,且AO=AB,反比例函数y= 的图象经过点A,则k的值为___.
12、(4分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为____.
13、(4分)某种细菌的直径约为0.00 000 002米,用科学记数法表示该细菌的直径约为____米.
三、解答题(本大题共5个小题,共48分)
14、(12分)某大型物件快递公司送货员每月的工资由底薪加计件工资两部分组成,计件工资与送货件数成正比例.有甲乙两名送货员,如果送货量为x件时,甲的工资是y1(元),乙的工资是y2(元),如图所示,已知甲的每月底薪是800元,每送一件货物,甲所得的工资比乙高2元
(1)根据图中信息,分别求出y1和y2关于x的函数解析式;(不必写定义域)
(2)如果甲、乙两人平均每天送货量分别是12件和14件,求两人的月工资分别是多少元?(一个月为30天)
15、(8分)如图,直线与直线 ,两直线与轴的交点分别为、.
(1)求两直线交点的坐标;
(2)求的面积.
16、(8分)如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A、B两点,AB=5,OA:OB =3:4.
(1)求直线l的表达式;
(2)点P是轴上的点,点Q是第一象限内的点.若以A、B、P、Q为顶点的四边形是菱形,请直接写出Q点的坐标.
17、(10分)(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则①OA的长为 ;②点B的坐标为 (直接写结果);
(2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt△ACB如图放置,直角顶点
C(-1,0),点A(0,4),试求直线AB的函数表达式;
(3)拓展研究:如图3,在平面直角坐标系中,点B(4;3),过点B作BAy轴,垂足为点A;作BCx轴,垂足为点C,P是线段BC上的一个动点,点Q是直线上一动点.问是否存在以点P为直角顶点的等腰Rt△APQ,若存在,请求出此时P的坐标,若不存在,请说明理由.
18、(10分)一辆货车从A地运货到240km的B地,卸货后返回A地,如图中实线是货车离A地的路程y(km)关于出发后的时间x(h)之间的函数图象.货车出发时,正有一个自行车骑行团在AB之间,距A地40km处,以每小时20km的速度奔向B地.
(1)货车去B地的速度是 ,卸货用了 小时,返回的速度是 ;
(2)求出自行车骑行团距A地的路程y(km)关于x的函数关系式,并在此坐标系中画出它的图象;
(3)求自行车骑行团与货车迎面相遇,是货车出发后几小时后,自行车骑行团还有多远到达B地.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形的边长为5 cm,是边上一点,cm.动点由点向点运动,速度为2 cm/s ,的垂直平分线交于,交于.设运动时间为秒,当时,的值为______.
20、(4分)甲,乙,丙三位同学近次快速阅读模拟比赛成绩平均分均为分,且甲,乙,丙的方差是,则发挥最稳定的同学是__________.
21、(4分)如图,菱形的两个顶点坐标为,,若将菱形绕点以每秒的速度逆时针旋转,则第秒时,菱形两对角线交点的坐标为__________.
22、(4分)如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y 的图象上,则 k 的值为________.
23、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知y﹣2与x+1成正比例函数关系,且x=﹣2时,y=1.
(1)写出y与x之间的函数关系式;
(2)求当x=﹣3时,y的值;
25、(10分)先化简再求值:,其中m是方程的解.
26、(12分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示
(1)本次共抽查学生____人,并将条形图补充完整;
(2)捐款金额的众数是_____,平均数是_____;
(3)在八年级700名学生中,捐款20元及以上(含20元)的学生估计有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.
解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;
故选:A.
2、C
【解析】
根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.
3、B
【解析】
根据a<b<0,可得ab>0,a+b<0,>0,a-b<0,从而得出答案.
【详解】
A、ab>0,故本选项不符合题意;
B、>1,故本选项符合题意;
C、a+b<0,故本选项不符合题意;
D、a-b<0,故本选项不符合题意.
故选:B.
本题考查了不等式的性质,是基础知识比较简单.
4、D
【解析】
根据题意,等量关系为乙走的时间-=甲走的时间,根据等量关系式列写方程.
【详解】
20min=h
根据等量关系式,方程为:
故选:D
本题考查列写分式方程,注意题干中的单位不统一,需要先换算单位.
5、A
【解析】
根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.
【详解】
解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,
当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,
当15°<∠EOD<75°时,四边形AFCE为平行四边形,
当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,
当75°<∠EOD<105°时,四边形AFCE为平行四边形,
故选A.
本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.
6、D
【解析】
试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,
.故选D.
7、A
【解析】
根据方差的概念判断即可.
【详解】
在平均数相同的情况下,方差小的更稳定,
故选A.
本题考查方差的意义,关键在于牢记方差的概念.
8、B
【解析】
根据平行四边形的判定方法一一判断即可;
【详解】
解:A、由AE=CF,可以推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;
B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;
C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;
D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;
故选:B.
本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
设扇形的半径为R,则=4π,解得R=4,
设圆锥的底面半径为r,
根据题意得=4π,
解得r=1,
即圆锥的底面半径为1.
10、16
【解析】
根据条件可得:四边形ABCD是平行四边形,得,根据△BOC的周长比△AOB的周长大2cm,可得的长,求解即可.
【详解】
∵四边形ABCD中,AD∥BC,AD=BC
∴四边形ABCD是平行四边形
∴OA=OC,AB=CD=3
∵△BOC的周长比△AOB的周长大2cm
∴OB+OC+BC=OB+OA+AB+2
∴BC=AB+2=5
∴四边形ABCD的周长:5+5+3+3=16(cm)
故答案为:16
本题考查了平行四边形边长的问题,掌握平行四边形的性质是解题的关键.
11、1
【解析】
过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到 OB•AC=1,易得OC•AC=1,设A点坐标为(x,y),即可得到k=xy=OC•AC=1.
【详解】
过点A作OB的垂线,垂足为点C,如图,
∵AO=AB,
∴OC=BC=OB,
∵△ABO的面积为1,
∴OB⋅AC=1,
∴OC⋅AC=1.
设A点坐标为(x,y),而点A在反比例函数y= (k>0)的图象上,
∴k=xy=OC⋅AC=1.
故答案为:1.
此题考查反比例函数系数k的几何意义,解题关键在于作辅助线.
12、1
【解析】
先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.
【详解】
解:∵四边形ABCD是矩形,AD=8,
∴BC=8,
∵△AEF是△AEB翻折而成,
∴BE=EF=3,AB=AF,△CEF是直角三角形,
∴CE=8-3=5,
在Rt△CEF中,
设AB=x,
在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,
解得x=1,则AB=1.
故答案为:1.
本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
13、
【解析】
试题解析:0.00 000 002=2×10-8.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
三、解答题(本大题共5个小题,共48分)
14、(1)y1=20x+800;y2=18x+1200;(2)y1=8000元;y2=8760元.
【解析】
(1)设y1关于x的函数解析式为y1=kx+800,将(200,4800)代入,利用待定系数法即可求出y1=20x+800;根据每送一件货物,甲所得的工资比乙高2元,可设y2关于x的函数解析式为y2=18x+b,将(200,4800)代入,利用待定系数法即可求出y2=18x+1200;
(2)根据甲、乙两人平均每天送货量分别是12件和14件,得出甲、乙两人一个月送货量分别是12×30=360件和14×30=420件.再把x=360代入y1=20x+800,x=420代入y2=18x+1200,计算即可求解.
【详解】
(1)设y1关于x的函数解析式为y1=kx+800,
将(200,4800)代入,
得4800=200k+800,解得k=20,
即y1关于x的函数解析式为y1=20x+800;
∵每送一件货物,甲所得的工资比乙高2元,
而每送一件货物,甲所得的工资是20元,
∴每送一件货物,乙所得的工资比乙高18元.
设y2关于x的函数解析式为y2=18x+b,
将(200,4800)代入,
得4800=18×200+b,解得b=1200,
即y2关于x的函数解析式为y2=18x+1200;
(2)如果甲、乙两人平均每天送货量分别是12件和14件,
那么甲、乙两人一个月送货量分别是12×30=360件和14×30=420件.
把x=360代入y1=20x+800,得y1=20×360+800=8000(元);
把x=420代入y2=18x+1200,得y2=18×420+1200=8760(元).
本题考查了一次函数的应用,利用待定系数法求直线的解析式,以及代数式求值,读懂题目信息,理解函数图象是解题的关键.
15、(1)A(1,0),B(3,0);(2)1
【解析】
分析:(1)通过解方程组组可得到C点坐标;
(2)先确定A点和B点坐标,然后根据三角形面积公式求解.
详解:(1)由得
∴.
(2)在中,当时,
∴
在中,当时,
∴
∴
∴ .
点睛:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.
16、(1)y=+4 (2)(3,5)或(3,)
【解析】
(1)首先根据已知条件以及勾股定理求得OA、OB的长度,即求得A、B的坐标,利用待定系数法即可求解;
(2)分P在B点的上边和在B的下边两种情况画出图形进行讨论,求得Q的坐标.
【详解】
(1)∵OA:OB=3:4,AB=5,
∴根据勾股定理,得OA=3,OB=4,
∵点A、B在x轴、y轴上,
∴A(3,0),B(0,4),
设直线l表达式为y=kx+b(k≠0),
∵直线l过点A(3,0),点B(0,4),
∴ ,
解得 ,
∴直线l的表达式为y=+4;
(2)如图,当四边形BP1AQ1是菱形时,则有BP1=AP1=AQ1,
则有OP1=4-BP1,
在Rt△AOP1中,有AP12=OP12+AO2,
即AQ12=(4-AQ1)2+32,
解得:AQ1=,所以Q1的坐标为(3,);
当四边形BP2Q2A是菱形时,则有BP2 =AQ2=AB=5,
所以Q2的坐标为(3,5),
综上所述,Q点的坐标是(3,5)或(3,).
本题考查了一次函数的性质、勾股定理、菱形的判定与性质,熟练掌握待定系数法、运用分类讨论与数形结合思想是解题的关键.
17、(1),(2)(3),
【解析】
由可得,,,,易证≌,,,因此;
同可证≌,,,,求得最后代入求出一次函数解析式即可;
分两种情况讨论当点Q在x轴下方时,当点Q在x轴上方时根据等腰构建一线三直角,从而求解.
【详解】
如图1,作轴,轴.
,
,,
,
≌,
,,
.
故答案为,;
如图2,过点B作轴.
,
≌,
,,
.
设直线AB的表达式为
将和代入,得
,
解得,
直线AB的函数表达式.
如图3,设,分两种情况:
当点Q在x轴下方时,轴,与BP的延长线交于点.
,
,
在与中
≌
,
,,
,
解得
此时点P与点C重合,
;
当点Q在x轴上方时,轴,与PB的延长线交于点.
同理可证≌.
同理求得
综上,P的坐标为:,
本题考查了一次函数与三角形的全等,熟练掌握一次函数的性质与三角形全等判定是解题的关键.
18、(1)60km/h,1小时,80km/h(2)y=20x+40 (0≤x≤10)(3)自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地
【解析】
分析:(1)根据速度,以及函数图象中的信息即可解决问题; (2)根据题意y=20x+40(0≤x≤10),画出函数图象即可; (3)利用方程组求交点坐标即可;
详解:(1)货车去B地的速度==60km/h,观察图象可知卸货用了1小时,
返回的速度==80km/h,故答案为60(km/h),1,80(km/h).
(2)由题意y=20x+40 (0≤x≤10),函数图象如图所示,
(3)货车返回时,y关于x的函数解析式是:y=﹣80x+640 (5≤x≤8)
解方程组,解得得,
答:自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地.
点睛:本题考查了一次函数的应用及速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
连接ME,根据MN垂直平分PE,可得MP=ME,当时,BC=MP=5,所以可得EM=5,AE=3,可得AM=DP=4,即可计算出t 的值.
【详解】
连接ME
根据MN垂直平分PE
可得为等腰三角形,即ME=PM
故答案为2.
本题主要考查等腰三角形的性质,这类题目是动点问题的常考点,必须掌握方法.
20、丙
【解析】
方差反应了一组数据的波动情况,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定,据此进一步判断即可.
【详解】
∵,,,
∴丙同学的方差最小,
∴发挥最稳定的同学是丙,
故答案为:丙.
本题主要考查了方差的意义,熟练掌握相关概念是解题关键.
21、(-,0)
【解析】
先计算得到点D的坐标,根据旋转的性质依次求出点D旋转后的点坐标,得到变化的规律即可得到答案.
【详解】
∵菱形的两个顶点坐标为,,
∴对角线的交点D的坐标是(2,2),
∴,
将菱形绕点以每秒的速度逆时针旋转,
旋转1次后坐标是(0, ),
旋转2次后坐标是(-2,2),
旋转3次后坐标是(-,0),
旋转4次后坐标是(-2,-2),
旋转5次后坐标是(0,-),
旋转6次后坐标是(2,-2),
旋转7次后坐标是(,0),
旋转8次后坐标是(2,2)
旋转9次后坐标是(0,,
由此得到点D旋转后的坐标是8次一个循环,
∵,
∴第秒时,菱形两对角线交点的坐标为(-,0)
故答案为:(-,0).
此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D的坐标依次求出旋转后的坐标得到变化规律是解题的关键.
22、−3
【解析】
设A(a,b),则ab=,分别过A,C作AE⊥x轴于E,CF⊥x轴于F,根据相似三角形的判定证得△AOE∽△COF,由相似三角形的性质得到OF=,CF=,则k=-OF•CF=-3.
【详解】
设A(a,b),
∴OE=a,AE=b,
∵在反比例函数y=图象上,
∴ab=,
分别过A,C作AE⊥x轴于E,CF⊥x轴于F,
∵矩形AOCB,
∴∠AOE+∠COF=90°,
∴∠OAE=∠COF=90°−∠AOE,
∴△AOE∽△OCF,
∵OC=OA,
∴===,
∴OF=AE=b,CF=OE=a,
∵C在反比例函数y=的图象上,且点C在第四象限,
∴k=−OF⋅CF=−b⋅a=−3ab=−3.
本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.
23、
【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度
【详解】
∵四边形ABCD是菱形,
∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,
∴BC==5cm,
∴S菱形ABCD==×6×8=24cm2,
∵S菱形ABCD=BC×AE,
∴BC×AE=24,
∴AE=cm.
故答案为: cm.
此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-4x-2;(2)2
【解析】
(1)利用正比例函数的定义设y-2=k(x+1),然后把已知的对应值代入求出k得到y与x之间的函数关系式;
(2)利用(1)中的函数解析式,计算自变量为-3时对应的函数值即可.
【详解】
解:(1)设y-2=k(x+1),
∵x=-2 y=1,
∴1-2=k•(-2+1),解得k=-4
∴y=-4x-2;
(2)由(1)知 y=-4x-2,
∴当x=-3时,y==2.
本题考查了用待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
25、;.
【解析】
先将括号内通分计算分式的减法,再讲除式分子因式分解、除法转化为乘法,约分即可化简,由方程得解得概念可得,即可知原式的值.
【详解】
=
==,
∵m是方程的解,
∴,
∴原式=
此题考查分式的化简求值,解题关键在于掌握分式的运算法则.2
26、 (1)50;补图见解析;(2)10,13.1;(3)154人.
【解析】
(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;
(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;
(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.
【详解】
(1)本次抽查的学生有:14÷28%=50(人),
则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:
故答案为50;
(2)由条形图可知,捐款10元人数最多,故众数是10;
这组数据的平均数为: =13.1;
故答案为10,13.1.
(3)捐款20元及以上(含20元)的学生有:×700=154(人);
此题考查条形统计图;用样本估计总体;扇形统计图;加权平均数;众数,解题关键在于看懂图中数据
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2025届陕西省西安电子科技大附属中学九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽阜阳市数学九上开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。