2025届安徽阜阳市数学九上开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为( )
A.36件B.37件C.38件D.38.5件
2、(4分)已知点P位于x轴上方,到x轴的距离为2,到y轴的距离为5,则点P坐标为( )
A.(2,5)B.(5,2)C.(2,5)或(-2,5)D.(5,2)或(-5,2)
3、(4分)方程2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为( )
A.3、2、5 B.2、3、5 C.2、﹣3、﹣5 D.﹣2、3、5
4、(4分)已知▱ABCD的周长为50cm,△ABC的周长为35cm,则对角线AC的长为( )
A.5cmB.10cmC.15cmD.20cm
5、(4分)如图,在矩形ABCD中,M是BC边上一点,连接AM,过点D作,垂足为若,,则BM的长为
A.1B.C.D.
6、(4分)小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是( )
A.小时B.小时C.或小时D.或或小时
7、(4分)已知a<b,则下列不等式不成立的是( )
A.a+2<b+2B.2a<2bC.D.﹣2a>﹣2b
8、(4分)函数y=mx+n与y=nx的大致图象是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,第、、、…中分别有“小正方形”个、个、个、个…,则第幅图中有“小正方形”__________个.
(1) (2) (3) (4)
10、(4分)如图,中,,,的垂直平分线分别交、于、,若,则________.
11、(4分)若为三角形三边,化简___________.
12、(4分)点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=_____.
13、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点,连接、.则下列结论:①:②;③:④.其中正确的有_(把你认为正确结论的序号都填上)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,直线分别交两轴于点,点的横坐标为4,点在线段上,且.
(1)求点的坐标;
(2)求直线的解析式;
(3)在平面内是否存在这样的点,使以为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,不必说明理由.
15、(8分)如图,△ABC中,AB=10,BC=6,AC=8.
(1)求证:△ABC是直角三角形;
(2)若D是AC的中点,求BD的长.(结果保留根号)
16、(8分)如图,在平行四边形ABCD中,BE平分∠ABC交CD的延长线于点E,作CF⊥BE于F.
(1)求证:BF=EF;
(2)若AB=8,DE=4,求平行四边形ABCD的周长.
17、(10分)问题:探究函数y=|x|﹣2的图象与性质.
小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.
下面是小华的探究过程,请补充完整:
(1)在函数y=|x|﹣2中,自变量x可以是任意实数;
(2)如表是y与x的几组对应值
①m等于多少;
②若A(n,2018),B(2020,2018)为该函数图象上不同的两点,则n等于多少;
(3)如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象;根据函数图象可得:该函数的最小值为多少;该函数图象与x轴围成的几何图形的面积等于多少;
(4)已知直线y1=x﹣与函数y=|x|﹣2的图象交于C,D两点,当y1≥y时,试确定x的取值范围.
18、(10分)综合与探究
问题情境:
在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.
“兴趣小组”写出的两个数学结论是:
①S△OMC+S△ONC=S正方形ABCD;
②BM1+CM1=1OM1.
问题解决:
(1)请你证明“兴趣小组”所写的两个结论的正确性.
类比探究:
(1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE=AD,用尺规作图法作出∠BAD的角平分线AG,若AD=5,DE=6,则AG的长是_________________.
20、(4分)把二次函数y= -2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是 _____________;
21、(4分)分式的值为0,那么x的值为_____.
22、(4分)如果在平行四边形ABCD中,两个邻角的大小是5:4,那么其中较小的角等于_____.
23、(4分)将代入反比例函数中,所得函数值记为,又将代入函数中,所得函数值记为,再将代入函数中,所得函数值记为,如此继续下去,则________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在矩形ABCD中,E是对角线BD上一点(不与点B、D重合),过点E作EF∥AB,且EF=AB,连接AE、BF、CF。
(1)若DE=DC,求证:四边形CDEF是菱形;
(2)若AB=,BC=3,当四边形ABFE周长最小时,四边形CDEF的周长为__________。
25、(10分)如图,直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.
(1)求的值及的解析式;
(2)求的值;
(3)一次函数的图象为,且,,不能围成三角形,直接写出的值.
26、(12分)如图,已知过点B(1,0)的直线与直线:相交于点P(-1,a).且l1与y轴相交于C点,l2与x轴相交于A点.
(1)求直线的解析式;
(2)求四边形的面积;
(3)若点Q是x轴上一动点,连接PQ、CQ,当△QPC周长最小时,求点Q坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据加权平均数的公式进行计算即可得.
【详解】
=37,
即这周里张海日平均投递物品件数为37件,
故选B.
本题考查了加权平均数的计算,熟知加权平均数的计算公式是解题的关键.
2、D
【解析】
由点P位于x轴上方可得点P的纵坐标大于0,所以点P的纵坐标为2,由于点P相对于y轴的位置不确定,所以点P的横坐标为5或﹣5.
【详解】
由题意得P(5,2)或(﹣5,2).
故选D.
本题主要考查点的坐标,将点到坐标轴的距离转化为相应的坐标是解题的关键.
3、C
【解析】分析:对于一元二次方程ax2+bx+c=0(a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.
详解:2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣3、﹣5.
故选C.
点睛:本题考查了一元二次方程的一般形式: ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项, bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
4、B
【解析】
根据平行四边形的性质,首先计算AB+CB的长度,再结合三角形的周长,进而计算对角线AC的长.
【详解】
解:∵平行四边形的对边相等,
∴AB+CB=25,
而△ABC的周长为35cm,
∴AC=35﹣AB﹣CB=10cm.
故选:B.
本题主要考查对角线的长度的计算,结合平行四边形的性质和三角形的周长可得对角线的长度.
5、D
【解析】
由AAS证明≌,得出,证出,连接DM,由HL证明≌,得出,因此,设,则,,在中,由勾股定理得出方程,解方程即可.
【详解】
解:四边形ABCD是矩形,
,,,,
,
,
,
,
,
在和中,,
≌,
,
,
,
在和中,
,
≌,
,
,
设,则,,
在中,由勾股定理得:,
解得:,
.
故选D.
本题考查了矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问题的关键.
6、C
【解析】
利用众数及中位数的定义解答即可.
【详解】
解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;
当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;
当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;
当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C.
本题考查了众数及中位数的概念,解题的关键是根申请题意,并结合题意分类讨论解答.
7、C
【解析】
根据不等式的基本性质对各选项进行逐一分析即可.
【详解】
A、将a<b两边都加上2可得a+2<b+2,此不等式成立;
B、将a<b两边都乘以2可得2a<2b,此不等式成立;
C、将a<b两边都除以2可得,此选项不等式不成立;
D、将a<b两边都乘以-2可得-2a>-2b,此不等式成立;
故选C.
本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.
8、D
【解析】
当m>0,n>0时,y=mx+n经过一、二、三象限,y=nx经过一、三象限;
当m>0,n<0时,y=mx+n经过一、三、四象限,y=nx经过二、四象限;
当m<0,n>0时,y=mx+n经过一、二、四象限,y=nx经过一、三象限;
当m<0,n<0时,y=mx+n经过二、三、四象限,y=nx经过二、四象限.
综上,A,B,C错误,D正确
故选D.
考点:一次函数的图象
二、填空题(本大题共5个小题,每小题4分,共20分)
9、109
【解析】
仔细观察图形的变化规律,利用规律解答即可.
【详解】
解:观察发现:
第(1)个图中有1×2-1=1个小正方形;
第(2)个图中有2×3-1=5个小正方形;
第(3)个图中有3×4-1=11个小正方形;
第(4)个图中有4×5-1=19个小正方形;
…
第(10)个图中有10×11-1=109个小正方形;
故答案为109.
此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.
10、
【解析】
先根据垂直平分线的性质,判定AM=BM,再求出∠B=30°,∠CAM=90°,根据直角三角形中30度的角对的直角边是斜边的一半,得出BM=AM=CA,即CM=2BM,进而可求出BC的长.
【详解】
如图所示,连接AM,
∵∠BAC=120°,AB=AC,
∴∠B=∠C=30°,
∵MN⊥AB,
∴BM=2MN=2,
∵MN是AB的垂直平分线,
∴BM=AM=2,
∴∠BAM=∠B=30°,
∴∠MAC=90°,
∴CM=2AM=4,
∴BC=2+4=1.
故答案为1.
此题主要考查了等腰三角形的性质,含30°角的直角三角形的性质,以及线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
11、4
【解析】
根据三角形的三边关系得到m的取值范围,根据取值范围化简二次根式即可得到答案.
【详解】
∵2,m,4是三角形三边,
∴2
∴原式==m-2-(m-6)=4,
故答案为:4.
此题考查三角形的三边关系,绝对值的性质,化简二次根式,根据三角形的三边关系确定绝对值里的数的正负是解题的关键.
12、-3
【解析】
点P(m+2,2m+1)向右平移1个单位长度后 ,正好落在y轴上,则
13、①②③④
【解析】
根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;由①和翻折的性质得出△ABG≌△AFG,△ADE≌△AFE,即可得出;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF.
【详解】
解:①正确,∵四边形ABCD是正方形,将△ADE沿AE对折至△AFE,
∴AB=AD=AF,
在△ABG与△AFG中,;
△ABG≌△AFG(SAS);
②正确,
∵由①得△ABG≌△AFG,
又∵折叠的性质,△ADE≌△AFE,
∴∠BAG =∠FAG,∠DAE=∠EAF,
∴∠EAG=∠FAG+∠EAF=90°×=45°;
③正确,
∵EF=DE=CD=2,
设BG=FG=x,则CG=6-x,
在直角△ECG中,
根据勾股定理,得(6-x)2+42=(x+2)2,
解得x=3,
∴BG=3=6-3=GC;
④正确,
∵CG=BG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF,
又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.
三、解答题(本大题共5个小题,共48分)
14、(1)点;(2);(3)点的坐标是,,.
【解析】
(1)首先根据直线y=-x+8分别交两轴于点A、B,可得点A的坐标是(8,0),点B的坐标是(0,8),然后根据点在线段上,且,即可求出点D的坐标;
(2)利用待定系数法可求直线CD的解析式;
(3)设点,分情况讨论,由平行四边形的性质和中点坐标公式,可求出点F的坐标.
【详解】
解:(1)∵直线分别交两轴于点,
∴当时,,当时,
∴点,点
∵点在线段上,且.
∴点
(2)∵点的横坐标为4,且在直线上,
∴,
∴点
设直线的解析式
∴,解得:
∴直线解析式为:.
(3)设点
①若以为边,
∵四边形是平行四边形,∴互相平分,
∵点,点,点,点
∴,解得,
∴点
②若以为边
∵四边形是平行四边形,∴互相平分,
∵点,点,点,点
∴,解得,
∴点
③若以为边,
∵四边形是平行四边形,∴互相平分,
∵点,点,点,点
∴,解得,
∴点
综上所述:点的坐标是,,.
此题考查平行四边形的性质,中点坐标公式,求一次函数的解析式,解题关键在于分情况讨论.
15、 (1)见解析;(2)2.
【解析】
分析:(1)直接根据勾股定理逆定理判断即可;
(2)先由D是AC的中点求出CD的长,然后利用勾股定理求BD的长即可.
详解:(1)∵AB2=100, BC2=36, AC2=64,
∴AB2=BC2+AC2,
∴△ABC是直角三角形.
(2)CD=4,在Rt△BCD中,
BD=.
点睛:本题考查了勾股定理及其逆定理的应用,勾股定理是:直角三角形两条直角边的平方和等于斜边的平方;勾股定理逆定理是:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
16、 (1)证明见解析;(2)1.
【解析】
(1)只要证明CB=CE,利用等腰三角形的三线合一的性质即可解决问题;
(2)根据CE=CB,求出BC的长即可解决问题.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CE,
∴∠E=∠ABE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠E=∠CBE,
∴CB=CE,
∵CF⊥BE,
∴BF=EF.
(2)∵四边形ABCD是平行四边形,
∴AB=CD=8,
∵DE=4,
∴BC=CE=12,
∴平行四边形ABCD的周长为2(AB+BC)=1.
本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.
17、(2)①m=1;②﹣2020;(1)该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是4;(4)当y1≥y时x的取值范围是﹣1≤x≤1.
【解析】
(2)①把x=1代入y=|x|﹣2,即可求出m;
②把y=2018代入y=|x|﹣2,即可求出n;
(1)画出该函数的图象即可求解;
(4)在同一平面直角坐标系中画出函数y1=x﹣与函数y=|x|﹣2的图象,根据图象即可求出y1≥y时x的取值范围.
【详解】
(2)①把x=1代入y=|x|﹣2,得m=1;
②把y=2018代入y=|x|﹣2,得2018=|x|﹣2,
解得x=﹣2020或2020,
∵A(n,2018),B(2020,2018)为该函数图象上不同的两点,
∴n=﹣2020;
(1)该函数的图象如图,
由图可得,该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是×4×2=4;
(4)在同一平面直角坐标系中画出函数y1=x﹣与函数y=|x|﹣2的图象,
由图形可知,当y1≥y时x的取值范围是﹣1≤x≤1.
故答案为:(2)①m=1;②﹣2020;(1)该函数的最小值为﹣2;该函数图象与x轴围成的几何图形的面积是4;(4)当y1≥y时x的取值范围是﹣1≤x≤1.
本题考查了一次函数的图象与性质,一次函数图象上点的坐标特征.正确画出函数的图象,利用数形结合思想是解题的关键.
18、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.
【解析】
(1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;
②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;
(1)同(1)的方法即可得出结论.
【详解】
解:(1)①∵正方形ABCD的对角线相交于O,
∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,
∵四边形OEFG是正方形,
∴∠MON=90°,
∴∠BOC﹣∠MOC=∠MON﹣∠MOC,
∴∠BOM=∠COM,
∴△BOM≌△CON,
∴S△BOM=S△CON,
∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;
②由①知,△BOM≌△CON,
∴OM=ON,BM=CN,
在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,
在Rt△MON中,MN1=OM1+ON1=1OM1,
∴BM1+CM1=1OM1;
(1)结论①不成立,
理由:∵正方形ABCD的对角线相交于O,
∴S△BOC=S正方形ABCD,OB=BD,OC=AC,AC=BD,AC⊥BD,∠ABC=∠BCD=90°,AC平分∠BCD,BD平分∠ABC,
∴OB=OC,∠BOC=90°,∠OBC=∠OCD=45°,
∴∠OBM=∠OCN=135°,
∵四边形OEFG是正方形,
∴∠MON=90°,
∴∠BOM=∠CON,
∴△BOM≌△CON,
∴S△BOM=S△CON,
∴S△OMC﹣S△BOM=S△OMC﹣S△CON=S△BOC=S正方形ABCD,
∴结论①不成立;
结论②成立,理由:
如图(1)
连接MN,∵△BOM≌△CON,
∴OM=ON,BM=CN,
在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,
在Rt△MON中,MN1=OM1+ON1=1OM1,
∴BM1+CM1=1OM1,
∴结论②成立.
本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
首先证明线段AG与线段DE互相垂直平分,利用勾股定理求出AH即可解决问题;
【详解】
解:分别以D和E作为圆心,以略长于EH的长度为半径作弧,交于点F,连接AF并延长,交CD于G,则AG即为∠BAD的角平分线,
设AG交BD于H,则AG垂直平分线线段DE(等腰三角形三线合一),
∴DH=EH=3,
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠AGD=∠GAB,
∵∠DAG=∠GAB,
∴∠DAG=∠DGA,
∴DA=DG,
∵DE⊥AG,
∴AH=GH(等腰三角形三线合一),
在Rt△ADH中,AH= ,
∴AG=2AH=1,
故答案为1.
本题考查作图-复杂作图、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;
20、y= -2x2+12x-2
【解析】
先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.
【详解】
解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.
按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得
y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.
故答案为:y=-2x2+12x-2.
本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.
21、2
【解析】
分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
解:由题意可得:x2﹣9=1且x+2≠1,
解得x=2.
故答案为:2.
此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.
22、80°
【解析】
根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=4:5,求出∠B即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B:∠C=4:5,
∴∠B=×180°=80°,
故答案为:80°.
本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键.
23、2
【解析】
可依次求出y的值,寻找y值的变化规律,根据规律确定的值.
【详解】
解:将代入反比例函数中得;
将代入函数得;
将代入函数得;
将代入函数得
由以上计算可知:y的值每三次重复一下
故y的值在重复670次后又计算了2次,所以
故答案为:2
本题属于反比例函数的求值规律题,找准函数值的变化规律是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)
【解析】
(1)由CD//EF,CD=EF可证四边形CDEF是平行四边形,由于DE=DC可证四边形CDEF是菱形
(2)当四边形ABFE周长最小时此时AE⊥BD,利用勾股定理可求BD、AE、ED的长度,进而求四边形CDEF的周长即可
【详解】
证明:(1)在矩形ABCD中CD∥AB,CD=AB,
∵EF∥AB, EF=AB
∴CD//EF,CD=EF
∴四边形CDEF是平行四边形,
又∵DE=DC
∴四边形CDEF是菱形
(2) 在矩形ABCD中,∠BAD=90°,AD=BC=3
∴
当四边形ABFE周长最小时,AE⊥BD
此时;BD= ,∠AED=90°
由(1)可知四边形CDEF是平行四边形
四边形CDEF的周长为
故:当四边形ABFE周长最小时,四边形CDEF的周长为
本题考查了菱形的判定方法,熟练掌握菱形的判定方法是解题的关键.
25、(1);(2)4;(3)或2或.
【解析】
(1)先求得点的坐标,再运用待定系数法即可得到的解析式;
(2)过作于,于,则,,再根据,,可得,,进而得出的值;
(3)分三种情况:当经过点时,;当,平行时,;当,平行时,;故的值为或2或.
【详解】
解:(1)把代入一次函数,可得
,
解得,
,
设的解析式为,则,
解得,
的解析式为;
(2)如图,过作于,于,则,,
,令,则;令,则,
,,
,,
;
(3)一次函数的图象为,且,,不能围成三角形,
当经过点时,;
当,平行时,;
当,平行时,;
故的值为或2或.
本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.
26、(1)y=-x+1;(2);(3)点Q坐标为(-,0)时△QPC周长最小
【解析】
(1)根据点P在直线l2上,求出P的坐标,然后用待定系数法即可得出结论;
(2)根据计算即可;
(3)作点C关于x轴对称点C',直线C’P与x轴的交点即为所求的点Q,求出点Q的坐标即可.
【详解】
(1)∵点P(-1,a)在直线l2:y=2x+4上,∴,即,则P的坐标为(-1,2),设直线的解析式为:,那么,解得:,∴的解析式为:.
(2)∵直线与y轴相交于点C,∴C的坐标为(0,1).
又∵直线与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而,∴.
(3)作点C关于x轴对称点C′,易求直线C′P:y=-3x-1.当y=0时,x=,∴点Q坐标为(,0)时,△QPC周长最小.
本题考查了一次函数的应用.掌握用待定系数法求一次函数的解析式、不规则图形面积的求法是解答本题的关键.
题号
一
二
三
四
五
总分
得分
x
…
﹣3
﹣2
﹣1
0
1
2
3
…
y
…
1
0
﹣1
﹣2
﹣1
0
m
…
2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西来宾市九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年广西来宾市九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省桐城市九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年安徽省桐城市九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。