陕西西安铁一中学2025届数学九上开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,一次函数的图象与轴、轴分别相交于点,,点的坐标为,且点在的内部,则的取值范围是( )
A.B.C.D.或
2、(4分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5B.6C.7D.8
3、(4分)如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是( )
A.B.C.D.5
4、(4分)一根长为20cm的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P的长度相等,且PM=PN=5cm,则长方形纸条的宽为( )
A.1.5cmB.2cmC.2.5cmD.3cm
5、(4分)若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A.B.1C.D.
6、(4分)如果有意义,那么实数x的取值范围是( )
A.x≥0B.x≠2C.x≥2D.x≥-2
7、(4分)若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为( )
A.B.2020C.2019D.2018
8、(4分)若,两点都在直线上,则与的大小关系是( )
A.B.C.D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数,则当函数值y=8时,自变量x的值是_____.
10、(4分)关于x的一元二次方程(x+1)(x+7)= -5的根为_______________.
11、(4分)若为三角形三边,化简___________.
12、(4分)如图,在四边形中, 是边的中点,连接并延长,交的延长线与点, ,请你添加一个条件(不需要添加任何线段或字母),使之能推出四边形为平行四边形,你添加的条件是_________,并给予证明.
13、(4分)如图,在平面直角坐标系中,过点分别作轴于点,轴于点,、分别交反比例函数的图像于点、,则四边形的面积为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简:,再从中选取一个你认为合适的整数代入求值.
15、(8分)为了了解学校开展“孝敬父母,从家务劳动做起”活动的实施情况,该校抽取八年级50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时)得到一组数据,绘制成下表:
(1)请填表中未完成的部分;
(2)根据以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比是多少?
(3)针对以上情况,写出一个20字以内的倡导“孝敬父母,热爱劳动”的句子.
16、(8分)已知在菱形ABCD中,对角线AC、BD交于点O,AB=2AO;(1)如图1,求∠BAC的度数;(2)如图2,P为菱形ABCD外一点,连接AP、BP、CP,若∠CPB=120°,求证:CP+BP=AP;(3)如图3,M为菱形ABCD外一点,连接AM、CM、DM,若∠AMD=150°,
CM=2,DM=2,求四边形ACDM的面积。
17、(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(−4,5),(−1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△DEF,其中点A对应点D,点B对应点E,点C对应点F;
(3)写出点E关于原点的对称点M的坐标.
18、(10分)如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠1.求证:四边形ABCD是矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图是一个棱长为6的正方体盒子,一只蚂蚁从棱上的中点出发,沿盒的表面爬到棱上后,接着又沿盒子的表面爬到盒底的处.那么,整个爬行中,蚂蚁爬行的最短路程为__________.
20、(4分)已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.
21、(4分)已知一组数据1,4,a,3,5,若它的平均数是3,则这组数据的中位数是________.
22、(4分)某公司招聘考试分笔试和面试两项,其中笔试按,面试按计算加权平均数作为总成绩.马丁笔试成绩85分,面试成绩90分,那么马丁的总成绩是______分.
23、(4分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知正方形ABCD边长为2,E是BC边上一点,将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,求BE的长.
25、(10分)先化简再求值:,其中m是不等式的一个负整数解.
26、(12分)如图,四边形ABCD的四个顶点都在网格上,且每个小正方形的边长都为1
(1)求四边形ABCD的面积;
(2)求∠BCD的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先根据函数解析式求出点A、B的坐标,再根据题意得出,,解不等式组即可求得.
【详解】
函数,
,,
点在的内部,
,,
.
故选:.
本题考查了一次函数图象上点的坐标特征,掌握函数与坐标轴的特征及依据题意列出不等式是解题的关键.
2、A
【解析】
试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除.故答案选A.
考点:等腰三角形的判定;坐标与图形性质.
3、D
【解析】
先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.
【详解】
解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,
设AC=b,BC=a,AB=c,
∵△ABC是直角三角形,且∠BAC=90度,
∴c2+b2=a2,
∴c2+b2=a2,
又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,
∴S1+S2=S3,
∵S3=8,S2=3,
∴S1=S3−S2=8−3=5,
故选:D.
本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.
4、B
【解析】
设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP和BM的长度中间的长度为5x,将折叠的纸条展开,根据题意列出方程式求出x的值即可.
【详解】
解:如图:
设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20
由题意可得:5×2+5x=20
解得:x=2
故选:B.
本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.
5、A
【解析】
【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
【详解】x(x+1)+ax=0,
x2+(a+1)x=0,
由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
解得:a1=a2=-1,
故选A.
【点睛】本题考查一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
6、D
【解析】
根据二次根式有意义的条件即可求出x的取值范围.
【详解】
由题意可知:x+2≥0,
∴x≥-2
故选D.
本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件.
7、B
【解析】
对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.
【详解】
对于一元二次方程a(x-1)2+b(x-1)-1=0,
设t=x-1,
所以at2+bt-1=0,
而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,
所以at2+bt-1=0有一个根为t=2019,
则x-1=2019,
解得x=1,
所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.
故选B.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
8、C
【解析】
根据一次函数的性质进行判断即可.
【详解】
解:∵直线的K=2>0,
∴y随x的增大而增大,
∵-4<-2,
∴.
故选C.
本题考查了一次函数的增减性,当K>0时,y随x的增大而增大,当K<0时,y随x的增大而减小.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或4
【解析】
把y=8直接代入函数即可求出自变量的值.
【详解】
把y=8直接代入函数,得:,
∵,
∴
代入,得:x=4,所以自变量x的值为或4
本题比较容易,考查求函数值.
(1)当已知函数解析式时,求函数值就是求代数式的值;
(2)函数值是唯一的,而对应的自变量可以是多个.
10、
【解析】
整理成一般式后,利用因式分解法求解可得.
【详解】
解:整理得:x2+8x+12=0,
(x+2)(x+1)=0,
x+2=0,x+1=0,
x1=-2,x2=-1.
故答案为:.
本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键.
11、4
【解析】
根据三角形的三边关系得到m的取值范围,根据取值范围化简二次根式即可得到答案.
【详解】
∵2,m,4是三角形三边,
∴2
∴原式==m-2-(m-6)=4,
故答案为:4.
此题考查三角形的三边关系,绝对值的性质,化简二次根式,根据三角形的三边关系确定绝对值里的数的正负是解题的关键.
12、添加的条件是:∠F=∠CDE
【解析】
由题目的已知条件可知添加∠F=∠CDE,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB,进而证明四边形ABCD为平行四边形.
【详解】
条件是:∠F=∠CDE,
理由如下:
∵∠F=∠CDE
∴CD∥AF
在△DEC与△FEB中,
,
∴△DEC≌△FEB
∴DC=BF,∠C=∠EBF
∴AB∥DC
∵AB=BF
∴DC=AB
∴四边形ABCD为平行四边形
故答案为:∠F=∠CDE.
本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
13、1
【解析】
根据反比例函数系数k的几何意义可得S△DBO=S△AOC=|k|=1,再利用矩形OCPD的面积减去△BDO和△CAO的面积即可.
【详解】
解:∵B、A两点在反比例函数的图象上,
∴S△DBO=S△AOC=×2=1,
∵P(2,3),
∴四边形DPCO的面积为2×3=6,
∴四边形BOAP的面积为6﹣1﹣1=1,
故答案为:1.
此题主要考查了反比例函数k的几何意义,关键是掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.
三、解答题(本大题共5个小题,共48分)
14、;当时,原式或当时,原式(任选其一即可).
【解析】
先根据分式的各个运算法则化简,然后从x的取值范围中选取一个使原分式有意义的值代入即可.
【详解】
解:原式
.
∵的整数有-4,-3,-2,-1,又根据分式的有意义的条件,,3和-1.
∴取-4或-2.
当时,原式.
当时,原式.
此题考查的是分式的化简求值题,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.
15、(1)详见解析;(2)58%;(3)详见解析.
【解析】
(1)根据百分比的意义以及各组的百分比的和是1即可完成表格;
(2)根据百分比的意义即可求解;
(3)根据实际情况,写出的句子只要符合题意,与家务劳动有关即可,答案不唯一.
【详解】
解:(1)一组的百分比是:;
一组的百分比是:;
一组的人数是2(人;
(2)每周做家务的时间不超过1.5小时的学生所占的百分比是:;
(3)孝敬父母,每天替父母做半小时的家务.
本题难度中等,考查统计图表的识别,要注意统计表中各部分所占百分比的和是1,各组人数的和就是样本容量.
16、(1)∠BAC=60°;(2)见解析;(3).
【解析】
(1)如图1中,证明△ABC是等边三角形即可解决问题.
(2)在PA上截取PH,使得PH=PC,连接CH.证明△PCB≌△HCA(SAS)即可;
(3)如图3中,作AH⊥DM交DM的延长线于H,延长AC到N,使得CN=AC,连接DN.证明A,N,D,M四点共圆,外接圆的圆心是点C,推出AD=CM= ,解直角三角形求出AH即可解决问题.
【详解】
解:(1)如图1中,
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABD=∠CBD,
∴∠AOB=90°,
∵AB=2OA,
∴∠ABO=30°,
∴∠ABC=60°,
∵BA=BC,
∴△ABC是等边三角形,
∴∠BAC=60°;
(2)证明:如图2中,
在PA上截取PH,使得PH=PC,连接CH.
∵∠BPC=120°,∠BAC=60°,
∴∠BPC+∠BAC=180°,
∴A,B,P,C四点共圆,
∴∠APC=∠ABC=60°,
∵PH=PC,
∴△PCH是等边三角形,
∴PC=CH,∠PCH=∠ACB=60°,
∴∠PCB=∠HCA,
∵CB=CA,CP=CH,
∴△PCB≌△HCA(SAS),
∴PB=AH,
∴PA=PH+AH=PC+PB;
(3)解:如图3中,作AH⊥DM交DM的延长线于H,延长AC到N,使得CN=AC,连接DN.
∵CA=CD=CN,
∴∠ADN=90°,
∵CD=CN,
∴∠N=∠CDN,
∵∠ACD=60°=∠N+∠CDN,
∴∠N=30°,
∵∠AMD=150°,
∴∠N+∠AMD=180°,
∴A,N,D,M四点共圆,外接圆的圆心是点C,
∴CA=CD=AD=CM=,
在Rt△AHM中,∵∠AMH=30°,
∴MH=AH,设AH=x,则HM=x,
在Rt△ADH中,∵AD2=AH2+DH2,
∴28=x2+(x+2)2,
解得x=或-2(舍弃),
∴AH=,
∴S四边形ACDM=S△ACD+S△ADM=×+×2×=.
本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,解直角三角形,四点共圆,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
17、(1)见解析;(2)见解析;(3)(−2,−1).
【解析】
(1)根据题意画出坐标系即可;
(2)根据关于y轴对称的点的坐标特点作出△DEF即可;
(3)根据中心对称的特点直接写出答案即可.
【详解】
(1)(2)如图:
(3)根据图象得到点E的坐标为(2,1),其关于原点对称的点的坐标为(−2,−1).
此题考查作图-轴对称变换,解题关键在于掌握作图法则.
18、参见解析.
【解析】
试题分析:此题利用对角线相等的平行四边形是矩形的判定方法来判定四边形ABCD是矩形.
试题解析:在□ABCD中,应用平行四边形性质得到AO=CO,BO=DO,又 ∵∠2=∠2 ,∴BO=CO,∴AO=BO=CO=DO,∴AC=BD,∴□ABCD为矩形.
考点:2.矩形的判定;2.平行四边形性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、15
【解析】
根据题意,先将正方体展开,再根据两点之间线段最短求解.
【详解】
将上面翻折起来,将右侧面展开,如图,连接,依题意得:
,,
∴.
故答案:15
此题考查最短路径,将正方体展开,根据两点之间线段最短,运用勾股定理是解题关键.
20、1
【解析】
根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.
【详解】
解:设这个凸多边形的边数是n,根据题意得
(n-2)•110°=3×360°,
解得n=1.
故这个凸多边形的边数是1.
故答案为:1.
本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.
21、3
【解析】
根据求平均数的方法先求出a, 再把这组数从小到大排列,3处于中间位置,则中位数为3.
【详解】
a=3×5-(1+4+3+5)=2,
把这组数从小到大排列:1,2,3,4,5,
3处于中间位置,则中位数为3.
故答案为:3.
本题考查中位数与平均数,解题关键在于求出a.
22、1
【解析】
根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.
【详解】
小明的总成绩为85×60%+90×40%=1(分).
故答案为:1.
本题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.
23、x≤1.
【解析】
将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;
【详解】
解:点P(m,3)代入y=x+2,
∴m=1,
∴P(1,3),
结合图象可知x+2≤ax+c的解为x≤1,
故答案为:x≤1.
本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、BE=.
【解析】
根据正方形的性质得到CD=2,BD=,∠EBD=45°,根据折叠的性质得到DC′=DC=2,∠DC′E=∠C=90°,由等腰直角三角形的性质即可得到结论.
【详解】
∵在正方形ABCD中,AD=AB=2, A=90°,
∴BD=,∠EBD=45°,
∵将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,
∴C′D=CD=2,∠DC′E=C=90°,
∴CE=C′E=CB=,
∴BE=.
本题考查了正方形中的折叠问题,熟练掌握正方形,等腰直角三角形及折叠的性质是解题的关键.
25、,
【解析】
原式利用除法法则变形,约分后进行通分计算得到最简结果,求出不等式的解集确定出负整数解m的值,代入计算即可求出值.
【详解】
.
解不等式,得,
或-3或-1.
∵当时或时,分式无意义,
∴m只能等于-1.
当时,原式.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
26、(1);(2)∠BCD=90°.
【解析】
(1)利用正方形的面积减去四个顶点上三角形及小正方形的面积即可;
(2)连接BD,根据勾股定理的逆定理判断出△BCD的形状,进而可得出结论.
【详解】
.解:(1)S四边形ABCD=5×7﹣×1×7﹣×1×2﹣×2×4﹣×3×6=;
(2)连BD,
∵BC=2,CD=,BD=5,BC2+CD2=BD2,
∴∠BCD=90°.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
时间x(小时)
划记
人数
所占百分比
0.5x≤x≤1.0
正正
14
28%
1.0≤x<1.5
正正正
15
30%
1.5≤x<2
7
2≤x<2.5
4
8%
2.5≤x<3
正
5
10%
3≤x<3.5
3
3.5≤x<4
4%
合计
50
100%
陕西省西安市西安铁一中学2025届九上数学开学达标检测试题【含答案】: 这是一份陕西省西安市西安铁一中学2025届九上数学开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省西安爱知初级中学2024年九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份陕西省西安爱知初级中学2024年九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
甘肃省定西安定区七校联考2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份甘肃省定西安定区七校联考2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。