2025届江苏省淮安市朱坝中学九年级数学第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分) 下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是( )
A.1B.2C.3D.4
2、(4分)顺次连接四边形各边中点所得到的四边形是菱形,则四边形必须满足的条件是( )
A.对角线互相垂直B.对角线相等
C.一组邻边相等D.一个内角是直角
3、(4分)若代数式 在实数范围内有意义,则的取值范围是( )
A.B.C.D.且
4、(4分)如图,中,,在同一平面内,将绕点A旋转到的位置,使得,则等于( )
A.B.C.D.
5、(4分)用配方法解一元二次方程,此方程可化为的正确形式是( )
A.B.C.D.
6、(4分)二次根式中x的取值范围是( )
A.x≥5B.x≤5C.x≥﹣5D.x<5
7、(4分)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为
A.14B.13C.12D.10
8、(4分)二次根式有意义的条件是( )
A.x<2B.x<﹣2C.x≥﹣2D.x≤2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)写出在抛物线上的一个点________.
10、(4分)如果两个最简二次根式与能合并,那么______.
11、(4分)计算__________.
12、(4分)如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,若图1正方形中MN=1,则CD=____.
13、(4分)如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣4=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为正整数,且该方程的两个根都是整数,求m的值.
15、(8分)解方程:(用公式法解).
16、(8分)如图,平行四边形ABCD中,AE=CE.
(1)用尺规或只用无刻度的直尺作出的角平分线,保留作图痕迹,不需要写作法.
(2)设的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.
17、(10分)(题文)如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.
求证:四边形AECD是菱形.
18、(10分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若AB=2,求△OEC的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.
20、(4分)将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为_____.
21、(4分)如图,在▱ABCD中,已知AD=9cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE=______cm.
22、(4分)函数y=–1的自变量x的取值范围是 .
23、(4分)因式分解: .
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并将不等式组的解集在所给数轴上表示出来.
25、(10分)某商场计划购进A、B两种新型节能台灯,已知B型节能台灯每盏进价比A型的多40元,且用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同.
(1)求每盏A型节能台灯的进价是多少元?
(2)商场将购进A、B两型节能台灯100盏进行销售,A型节能台灯每盏的售价为90元,B型节能台灯每盏的售价为140元,且B型节能台灯的进货数量不超过A型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?
26、(12分)如图,直角坐标系xOy中,一次函数y=kx+b的图象l1分别与x轴,y轴交于A(15,0),B两点,正比例函数y=x的图象l2与l1交于点C(m,3).
(1)求m的值及l1所对应的一次函数表达式;
(2)根据图象,请直接写出在第一象限内,当一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
①直角三角形两锐角互余逆命题是如果三角形中有两个角互余,那么这个三角形是直角三角形,是真命题;
②全等三角形的对应角相等逆命题是对应角相等的两个三角形全等,是假命题;
③两直线平行,同位角相等逆命题是同位角相等,两直线平行,是真命题:
④对角线互相平分的四边形是平行四边形逆命题是如果四边形是平行四边形,那么它的对角线互相平分,是真命题.
故选C.
本题考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.
2、A
【解析】
首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.
【详解】
如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,
∴EF=FG=GH=EH,BD=2EF,AC=2FG,
∴BD=AC.
∴原四边形一定是对角线相等的四边形.
故选B.
本题考查中点四边形,熟练掌握中位线的性质是解题的关键.
3、D
【解析】
分析:根据被开方数大于等于1,分母不等于1列式计算即可得解.
详解:由题意得,x+1≥1且x≠1,
解得x≥-1且x≠1.
故选D.
点睛:本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.
4、A
【解析】
根据平行线的性质得到∠ACD=∠CAB=63°,根据旋转变换的性质求出∠ADC=∠ACD=63°,根据三角形内角和定理求出∠CAD=54°,然后计算即可.
【详解】
解:∵DC∥AB,
∴∠ACD=∠CAB=63°,
由旋转的性质可知,AD=AC,∠DAE=∠CAB=63°,
∴∠ADC=∠ACD=63°,
∴∠CAD=54°,
∴∠CAE=9°,
∴∠BAE=54°,
故选:A.
本题考查的是旋转变换,掌握平行线的性质、旋转变换的性质是解题的关键.
5、D
【解析】
方程常数项移到右边,两边加上9变形即可得到结果.
【详解】
解:方程移项得:x2-6x=-1,
配方得:x2-6x+9=8,即(x-3)2=8,
故选D.
本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.
6、B
【解析】
根据二次根式有意义的条件列出不等式,再求解即可.
【详解】
解:由题意,得:5-x≥0,解得x≤5.
故答案为B.
本题考查了二次根式有意义的条件,明确二次根式中的被开方数a≥0是解题的关键.
7、C
【解析】
∵平行四边形ABCD,
∴AD∥BC,AD=BC,AO=CO,
∴∠EAO=∠FCO,
∵在△AEO和△CFO中,
,
∴△AEO≌△CFO,
∴AE=CF,EO=FO=1.5,
∵C四边形ABCD=18,∴CD+AD=9,
∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.
故选C.
本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.
8、C
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
由题意得:x+1≥0,解得:x≥﹣1.
故选C.
本题考查了的知识点为:二次根式有意义的条件是被开方数是非负数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(0,﹣4)(答案不唯一)
【解析】
把(0,﹣4)点的横坐标代入函数式,比较纵坐标是否相符,即可解答.
【详解】
将(0,﹣4)代入,
得到 ,
故(0,﹣4)在抛物线上,
故答案为:(0,﹣4).
此题考查二次函数图象上点的坐标特征,解题关键在于把点代入解析式.
10、1
【解析】
∵两个最简二次根式能合并,
∴ ,解得:a=1.
故答案为1.
11、
【解析】
将化成最简二次根式,再合并同类二次根式.
【详解】
解:
故答案为:
本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.
12、
【解析】
根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.
【详解】
解:如图:∵四边形MNQK是正方形,且MN=1,
∴∠MNK=45°,
在Rt△MNO中,OM=ON=,
∵NL=PL=OL=,
∴PN=,
∴PQ=,
∵△PQH是等腰直角三角形,
∴PH=FF'==BE,
过G作GG'⊥EF',
∴GG'=AE=MN=,
∴CD=AB=AE+BE=+=.
故答案为:.
本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.
13、3或6
【解析】
对直角中那个角是直角分三种情况讨论,再由折叠的性质和勾股定理可BE的长.
【详解】
解:如图,若∠AEF=90°
∵∠B=∠BCD=90°=∠AEF
∴四边形BCFE是矩形
∵将ABEC沿着CE翻折
∴CB=CF
∵四边形BCFE是正方形
∴BE=BC-AD=6,
如图,若∠AFE=90°
∵将△BEC沿着CE翻折
∴CB=CF=6,∠B=∠EFC=90°,BE=EF
∵∠AFE+∠EFC=180°
∴点A,点F,点C三点共线
∴
∴AF=AC-CF=4
∵
∴
∴BE=3,
若∠EAF=90°,
∵CD=8> CF=6
∴点F不可能落在直线AD上
∴.不存在∠EAF=90
综上所述:BE=3或6
故答案为:3或6
本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于m的不等式,求出不等式的解集即可得到m的范围;
(2)由m为正整数,可得出m=1、2,将m=1或m=2代入原方程求出x的值,由该方程的两个根都是整数,即可确定m的值,
【详解】
解:
(1)∵一元二次方程x2+2(m﹣1)x+m2﹣4=0有两个不相等的实数根,
∴
∴;
(2)∵m为正整数,
∴m=1或2,
当m=1时,方程为:x2﹣3=0,解得:(不是整数,不符合题意,舍去),
当m=2时,方程为:x2+2x=0,解得:都是整数,符合题意,
综上所述:m=2.
本题主要考查了根的判别式,掌握根的判别式是解题的关键.
15、
【解析】
先求出b2-4ac的值,再代入公式求出即可.
【详解】
解:3x2-4x+2=0,
∵a=3,b=-4,c=2,
∴△=b2-4ac=(-4)2-4×3×2=24,
∴x==,
则.
本题考查了解一元二次方程—公式法.熟记公式x=是解题的关键.
16、(1)见详解;(2)见解析.
【解析】
(1)只用无刻度直尺作图过程如下:①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;
(2)先根据AF=EC,AF∥CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.
【详解】
解:(1)如图所示,EO为∠AEC的角平分线;
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AFE=∠FEC,
又∵∠AEF=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF,
∴AF=EC,
∴四边形AECF是平行四边形,
又∵AE=EC,
∴平行四边形AECF是菱形.
本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.
17、证明见解析.
【解析】证明:∵AB∥CD,CE∥AD,
∴四边形AECD是平行四边形.
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AB∥CD,
∴∠ACD=∠BAC=∠DAC,
∴AD=DC,
∴四边形AECD是菱形.
18、(1)详见解析;(2)1
【解析】
(1)证出∠BAD=∠BCD,得出四边形ABCD是平行四边形,得出OA=OC,OB=OD,证出AC=BD,即可解决问题;
(2)作OF⊥BC于F.求出EC、OF即可解决问题;
【详解】
(1)证明:∵AD∥BC,
∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,
∵∠ABC=∠ADC,
∴∠BAD=∠BCD,
∴四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵OA=OB,
∴AC=BD,
∴四边形ABCD是矩形.
(2)解:作OF⊥BC于F,如图所示.
∵四边形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面积=•EC•OF=1.
本题考查矩形的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.1
【解析】
连接,利用勾股定理列式求出,判断出四边形是矩形,根据矩形的对角线相等可得,再根据垂线段最短可得时,线段的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接.
,,,
,
,,,
四边形是矩形,
,
由垂线段最短可得时,线段的值最小,
此时,,
即,
解得.
故答案为:2.1.
本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出时,线段的值最小是解题的关键,难点在于利用三角形的面积列出方程.
20、
【解析】
平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.
【详解】
解:可设新直线解析式为y=-x+b,
∵原直线y=﹣x+1经过点(0,1),
∴向右平移3个单位,(3,1),
代入新直线解析式得:b=,
∴新直线解析式为:y=﹣x+.
故答案为y=﹣x+.
此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.
21、1
【解析】
由平行四边形对边平行得AD∥BC,再根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD=9cm,CD=AB=6cm,
∴∠EDA=∠DEC,
又∵DE平分∠ADC,
∴∠EDC=∠ADE,
∴∠EDC=∠DEC,
∴CE=CD=6cm,
∴BE=BC-EC=1cm,
故答案为:1.
本题考查了平行四边形性质,等腰三角形的判定,平行线的性质,角平分线的定义,求出CE=CD=6cm是解题的关键.
22、x≥1
【解析】
试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.
考点:二次根式有意义
23、
【解析】
解:=;
故答案为
二、解答题(本大题共3个小题,共30分)
24、,见解析
【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出即可.
【详解】
解:
∵解不等式①得:x≤4,
解不等式②得:x<2,
∴原不等式组的解集为x<2,
不等式组的解集在数轴上表示如下:
.
此题考查解一元一次不等式组,在数轴上表示不等式组的解集,解题关键是能根据不等式得解集找出不等式组的解集.
25、(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.
【解析】
(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同,列方程求解;
(2)设购进B型台灯m盏,根据商场购进100盏台灯且规定B型台灯的进货数量不超过A型台灯数量的2倍,列不等式求解,进一步得到商场在销售完这批台灯时获利最多时的利润.
【详解】
解:(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,
根据题意得, ,
解得:x=60,
经检验:x=60是原方程的解,
故x+40=100,
答:每盏A型节能台灯的进价是60元,则B型节能台灯每盏进价为100元;
(2)设购进B型节能台灯m盏,购进A型节能台灯(100﹣m)盏,
依题意有m≤2(100﹣m),
解得m≤66,
90﹣60=30(元),
140﹣100=40(元),
∵m为整数,30<40,
∴m=66,即A型台灯购进34盏,B型台灯购进66盏时获利最多,
34×30+40×66
=1020+2640
=3660(元).
此时利润为3660元.
答:(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.
本题考查分式方程的应用和一元一次不等式的应用,解题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.
26、(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
【解析】
(1)先求得点C的坐标,再运用待定系数法即可得到l1的解析式;
(2)根据函数图象,结合C点的坐标即可求得.
【详解】
解:(1)把C(m,3)代入正比例函数y=x,可得3=m,
解得m=1,
∴C(1,3),
∵一次函数y=kx+b的图象l1分别过A(15,0),C(1,3),
∴ 解得,
∴l1的解析式为y=-x+5;
(2)由图象可知:第一象限内,一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围是0<x<1.
故答案为(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
本题考查两条直线相交或平行问题,关键是掌握待定系数法求函数解析式.
题号
一
二
三
四
五
总分
得分
批阅人
2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年江苏省淮安市朱坝中学数学九上期末联考试题含答案: 这是一份2023-2024学年江苏省淮安市朱坝中学数学九上期末联考试题含答案,共8页。
2023-2024学年江苏省淮安市朱坝中学九年级数学第一学期期末经典模拟试题含答案: 这是一份2023-2024学年江苏省淮安市朱坝中学九年级数学第一学期期末经典模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,二次函数,一元二次方程的根为,下列计算正确的是,如图,中,等内容,欢迎下载使用。