江苏省泰州市泰州中学2025届九年级数学第一学期开学统考模拟试题【含答案】
展开这是一份江苏省泰州市泰州中学2025届九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )
A.2B.3C.5D.7
2、(4分)在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )
A.测量对角线,看是否互相平分
B.测量两组对边,看是否分别相等
C.测量对角线,看是否相等
D.测量对角线的交点到四个顶点的距离,看是否都相等
3、(4分)下列各式:中,分式的有( )
A.1 个B.2 个C.3 个D.4 个
4、(4分)函数的自变量取值范围是( )
A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0
5、(4分)去分母解关于的方程产生增根,则的取值为( )
A.-1B.1C.3D.以上答案都不对
6、(4分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为( )
A.(1,1)B.C.D.
7、(4分)下列汽车标识中,是中心对称图形的是( )
A.B.C.D.
8、(4分)如图,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+KQ的最小值为( )
A.B.C.2D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是_____.
10、(4分)菱形的边长为,,则以为边的正方形的面积为__________.
11、(4分)在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______
12、(4分)若有意义,则x的取值范围为___.
13、(4分)在函数中,自变量x的取值范围是________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y+6与x成正比例,且当x=3时,y=-12,求y与x的函数关系式.
15、(8分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.
16、(8分)如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为.
(1)画出将向右平移5个单位长度,再向上平移1个单位长度得到,并写出的坐标.
(2)画出关于原点成中心对称的,并写出的坐标.
17、(10分).某酒厂生产A,B两种品牌的酒,平均每天两种酒共可售出600瓶,每种酒每瓶的成本和售价如表所示,设平均每天共获利y元,平均每天售出A种品牌的酒x瓶.
(1)请写出y关于x的函数关系式;
(2)如果该厂每天至少投入成本25000元,且售出的B种品牌的酒不少于全天销售总量的55%,那么共有几种销售方案?并求出每天至少获利多少元?
18、(10分)如图,高速公路的同一侧有A、B两城镇,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,且A′B′=8 km.
(1)要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.请在图中画出P的位置,并作简单说明.
(2)求这个最短距离.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.
20、(4分)若函数y=(a-3)x|a|-2+2a+1是一次函数,则a=.
21、(4分)我市在旧城改造中,计划在市内一块如下图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价元,则购买这种草皮至少需要______元.
22、(4分)两个相似三角形最长边分别为10cm和25cm,它们的周长之差为60cm,则这两个三角形的周长分别是。
23、(4分)一个正方形的面积为4,则其对角线的长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后,分别位于点Q、R处,且相距30海里,如果知道“远航”号沿北偏东方向航行,请求出“海天”号的航行方向?
25、(10分)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?
26、(12分)已知是的函数,自变量的取值范围为,下表是与的几组对应值
小明根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系中,指出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象.
(2)根据画出的函数图象填空.
①该函数图象与轴的交点坐标为_____.
②直接写出该函数的一条性质.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
2、D
【解析】
根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.
【详解】
解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;
B、两组对边是否分别相等,能判定平行四边形,故本选项错误;
C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;
D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.
故选:D.
本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.
3、B
【解析】
根据分式定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.
【详解】
是分式,共2个,故选:B.
本题考查分式的定义,解题的关键是掌握分式的定义.
4、B
【解析】
由题意得:x+1>0,
解得:x>-1.
故选B.
5、A
【解析】
分式方程去分母转化为整式方程,由分式方程有增根确定出x的值,代入整式方程计算即可求出m的值.
【详解】
方程两边乘以x-2得,x-3=m,
∵分式方程有增根,
∴x-2=0,即x=2,
∴2-3=m,
∴m=-1.
故选A..
本题考查了分式方程的增根:先把分式方程两边乘以最简公分母,把分式方程转化为整式方程,再解整式方程,然后把整式方程的解代入最简公分母中,若其值不为零,则此解为原分式方程的解;若其值为0,则此整式方程的解为原分式方程的增根.
6、B
【解析】
首先求出AB的长,进而得出EO的长,再利用含30度角的直角三角形的性质以及勾股定理进行求解即可.
【详解】
过E作EM⊥AC,则∠EMO=90°,
∵四边形ABCD是菱形,
∴AB=CD=BC=AD,AC⊥DB,∠BAO=∠BAD,
∵∠BAD=60°,
∴∠BAO=30°,
∵AC⊥DB,
∴∠BOA=90°,
∵E是AB的中点,
∴EO=EA=EB=AB,
∵菱形ABCD的周长为16,
∴AB=4,
∴EO=2,
∵EO=AE,
∴∠EOA=∠EAO=30°,
又∵∠EMO=90°,
∴EM=EO=1,
∴OM=
∴则点E的坐标为:(,1),
故选B.
本题考查了菱形的性质,坐标与图形,勾股定理,含30度角的直角三角形的性质,直角三角形斜边中线的性质,熟练掌握相关知识是解题的关键.
7、D
【解析】
根据中心对称图形的概念判断即可.(中心对称:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)
【详解】
根据中心对称图形的概念把图形绕着某一点旋转180°后,只有D选项才能与原图形重合,故选D.
本题主要考查中心对称图形的概念,是基本知识点,应当熟练的掌握.
8、A
【解析】
先根据四边形ABCD是菱形可知,AD//BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P'',连接P'Q,PC,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,再在Rt△BCP'中利用锐角三角函数的定义求出P'C的长即可。
【详解】
解:∵四边形ABCD是菱形,
∴AD//BC,
∵∠A=120°,
∴∠B=180°-∠A=180°-120°=60°,
作点P关于直线BD的对称点P',连接P'Q,P'C,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,
在Rt△BCP'中,
∵BC=AB=2,∠B=60°,
∴
故选:A.
本题考查的是轴对称一最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、a<﹣1
【解析】
根据不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变即可解本题.
【详解】
解:∵不等式(a+1)x>a+1的解集为x<1,
∴a+1<0,
∴a<﹣1,
故答案为:a<﹣1.
本题考查了不等式的基本性质,熟练掌握不等式两边同时除以一个负数不等号方向改变是解决本题的关键.
10、
【解析】
如图,连接AC交BD于点O,得出△ABC是等边三角形,利用菱形的性质和勾股定理求得BO,得出BD,即可利用正方形的面积解决问题.
【详解】
解:如图,
连接AC交BD于点O,
∵在菱形ABCD中,∠ABC=60°,AB=BC,AB=4,
∴△ABC是等边三角形∠ABO=30°,AO=2,
∴BO==2 ,
∴BD=2OB=4,
∴正方形BDEF的面积为1.
故答案为1.
本题考查菱形的性质,正方形的性质,勾股定理,等边三角形的判定与性质,注意特殊角的运用是解决问题的关键.
11、8或
【解析】
分CE:BE=1:3和BE:CE=1:3两种情况分别讨论.
【详解】
解:(1)当CE:BE=1:3时,如图:
∵四边形ABCD是矩形,
∴∠BAD=∠B=90º,
∴∠BAE=∠BEA=45º,
∴BE=AB=2,
∵CE:BE=1:3,
∴CE=,
∴BC=2+=;
(2)当BE:CE=1:3时,如图:
同(1)可求出BE=2,
∵BE:CE=1:3,
∴CE=6,
∴BC=2+6=8.
故答案为8或.
本题考查了矩形的性质.
12、x≥﹣1.
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,x+1≥0且x+2≠0,解得x≥﹣1.
故答案为x≥﹣1.
本题考查了二次根式有意义的条件和分式有意义的条件,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
13、x≥0
【解析】
【分析】由已知可得,x≥0且x+1≠0,可求得x的取值范围.
【详解】由已知可得,x≥0且x+1≠0,
所以,x的取值范围是x≥0
故答案为:x≥0
【点睛】本题考核知识点:自变量取值范围.解题关键点:根据式子的特殊性求自变量的取值范围.
三、解答题(本大题共5个小题,共48分)
14、y=﹣2x﹣1.
【解析】
试题分析:先根据y+1与x成正比例关系,假设函数解析式,再根据已知的一对对应值,求得系数k即可.
解:∵y+1与x成正比例,
∴设y+1=kx(k≠0),
∵当x=3时,y=﹣12,
∴﹣12+1=3k,
解得k=﹣2
∴y+1=﹣2x,
∴函数关系式为y=﹣2x﹣1.
15、(1)BE=DF;(2)四边形BC1DA是菱形.
【解析】
(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF
(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.
【详解】
(1)解:BE=DF.理由如下:
∵AB=BC,
∴∠A=∠C,
∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,
∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,
在△ABE和△C1BF中
,
∴△ABE≌△C1BF,
∴BE=BF
(2)解:四边形BC1DA是菱形.理由如下:
∵AB=BC=2,∠ABC=120°,
∴∠A=∠C=30°,
∴∠A1=∠C1=30°,
∵∠ABA1=∠CBC1=30°,
∴∠ABA1=∠A1,∠CBC1=∠C,
∴A1C1∥AB,AC∥BC1,
∴四边形BC1DA是平行四边形.
又∵AB=BC1,
∴四边形BC1DA是菱形
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.
16、 (1)见解析,的坐标;(2)见解析,的坐标.
【解析】
(1)根据平移的性质即可得到答案;
(2)根据中心对称的性质即可得到答案.
【详解】
(1)平移如图,即为所求.
的坐标
(2)如图,即为所求.
的坐标
本题考查平移的性质和轴对称的性质,解题的关键是掌握平移的性质和轴对称的性质.
17、(1)y;(2)共有4种方案,10335.
【解析】
(1)根据获利y=A种品牌的酒的获利+B种品牌的酒的获利,即可解答.
(2)根据生产B种品牌的酒不少于全天产量的55%,A种品牌的酒的成本+B种品牌的酒的成本≥25000,列出方程组,求出x的取值范围,根据x为正整数,即可得到生产方案;再根据一次函数的性质,即可求出每天至少获利多少元.
【详解】
(1)
(2)依题意2得
x为整数
解得
共有4种方案 A:267 B:333
A:268 B:332
A:269 B:331
A:270 B:330
至少获利
若x取267,y最小
本题考查了一次函数的应用,关键从表格种获得成本价和利润,然后根据利润这个等量关系列解析式,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后根据一次函数的性质求出哪种方案获利最小.
18、这个最短距离为10km.
【解析】
分析:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.
(2)作CD⊥BB1的延长线于D,在Rt△BCD中,利用勾股定理求出BC即可;
详解:(1)作点A关于MN的对称点C,连接BC交MN于点P,连接PA,此时PA+PB的值最小.
(2)作CD⊥BB1的延长线于D,
在Rt△BCD中,BC= =10,
∴PA+PB的最小值=PB+PC=BC=10(km).
点睛:本题考查作图-应用与设计,轴对称-最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,构造直角三角形解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据题意,结合图形可知,所求单价即为加权平均数,利用加权平均数的定义计算解答即可
【详解】
由加权平均数得,24×25%+20×1%+10×60%=6+3+6=1,
故答案为:1.
考查了加权平均数的定义,熟记加权平均数的定义,掌握有理数的混合运算法则是解题关键.
20、-1.
【解析】
∵函数y=(a-1)x|a|-2+2a+1是一次函数,
∴a=±1,
又∵a≠1,
∴a=-1.
21、150a
【解析】
作BA边的高CD,设与BA的延长线交于点D,则∠DAC=30°,由AC=30m,即可求出CD=15m,然后根据三角形的面积公式即可推出△ABC的面积为150m2,最后根据每平方米的售价即可推出结果.
【详解】
解:如图,作BA边的高CD,设与BA的延长线交于点D,
∵∠BAC=150°,
∴∠DAC=30°,
∵CD⊥BD,AC=30m,
∴CD=15m,
∵AB=20m,
∴S△ABC=AB×CD=×20×15=150m2,
∵每平方米售价a元,
∴购买这种草皮的价格为150a元.
故答案为:150a 元.
本题主要考查三角形的面积公式,含30度角的直角三角形的性质,关键在于做出AB边上的高,根据相关的性质推出高CD的长度,正确的计算出△ABC的面积.
22、40cm,100cm
【解析】设最长边为10cm的多边形周长为x,则最长边为24cm的多边形的周长为(x+60)cm.
∵周长之比等于相似比.
∴10/25 =x/(x+60).
解得x=40cm,x+60=100cm.
23、
【解析】
已知正方形的面积,可以求出正方形的边长,根据正方形的边长可以求出正方形的对角线长.
【详解】
如图,
∵正方形ABCD面积为4,
∴正方形ABCD的边长AB==2,
根据勾股定理计算BD=.
故答案为:.
本题考查了正方形面积的计算,考查了勾股定理的运用,计算正方形的边长是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 “海天”号的航行方向是沿北偏西方向航行
【解析】
直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角得出答案.
【详解】
由题意可得:RP=18海里,PQ=24海里,QR=30海里,
∵182+242=302,
∴△RPQ是直角三角形,
∴∠RPQ=90°,
∵“远航”号沿北偏东60°方向航行,
∴∠RPN=30°,
∴“海天”号沿北偏西30°方向航行.
此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.
25、摩托车的速度是40km/h,抢修车的速度是60km/h.
【解析】
试题分析:设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.
试题解析:设摩托车的是xkm/h,
x=40
经检验x=40是原方程的解.
40×1.5=60(km/h).
摩托车的速度是40km/h,抢修车的速度是60km/h.
考点:分式方程的应用.
26、 (1)见解析;(2)①(5,0);②见解析.
【解析】
(1)根据坐标,连接点即可得出函数图像;
(2)①根据图像,当x≥3时,根据两点坐标可得出函数解析式,进而可得出与轴的交点坐标;
②根据函数图像,相应的自变量的取值范围,可得出其性质.
【详解】
(1) 如图:
(2)①(5,0)
根据图像,当x≥3时,函数图像为一次函数,
设函数解析式为,将(3,4)和(4,2)两点代入,即得
解得
即函数解析式为
与x轴的交点坐标为(5,0);
②答案不唯一.如下几种答案供参考:
当0≤x≤3时,函数值y随x值增大而增大;
当x≥3时,函数值y随x值增大而减小;
当x=3时,函数有最大值为4;
该函数没有最小值.
此题主要考查利用函数图像获取信息,进行求解,熟练运用,即可解题.
题号
一
二
三
四
五
总分
得分
批阅人
A
B
成本(元)
50
35
售价(元)
70
50
0
1
2
3
3.5
4
4.5
…
1
2
3
4
3
2
1
…
相关试卷
这是一份江苏省泰州市高港实验学校2025届九上数学开学统考模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省泰州市泰州中学九上数学开学监测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省泰州市周庄初级中学九年级数学第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。