江苏省淮安市涟水实验中学2025届数学九年级第一学期开学经典模拟试题【含答案】
展开这是一份江苏省淮安市涟水实验中学2025届数学九年级第一学期开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法,你认为正确的是( )
A.0 的倒数是 0B.3-1=-3C.是有理数D. 3
2、(4分)函数的图象如图所示,则结论:①两函数图象的交点的坐标为(2,2);②当x>2时,;③当x=1时,BC=3;④当x逐渐增大时,随着的增大而增大,随着的增大而减小.则其中正确结论的序号是( )
A.①②B.①③C.②④D.①③④
3、(4分)一次函数与的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式的解集是x<3,其中正确的结论个数是( )
A.0B.1C.2D.3
4、(4分)使有意义的的取值范围是( )
A.B.C.D.
5、(4分)下列方程中,有实数解的方程是( )
A.;B.;
C.;D.
6、(4分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )
A.①③B.②③C.①④D.②④
7、(4分)如图,在轴正半轴上依次截取,过点、、、……分别作轴的垂线,与反比例函数交于点、、、…、,连接、、…,,过点、、…、分别向、、…、作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于( ).
A.B.C.D.
8、(4分)如图,是正内一点,,,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①可以由绕点逆时针旋转得到;②点与点的距离为8;③;④;其中正确的结论是( )
A.①②③B.①③④C.②③④D.①②
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系xOy中,四边形0ABC是平行四边形,且A(4,0),B(6,2),则直线AC的解析式为___________.
10、(4分)当x=2018时,的值为____.
11、(4分)命题“对角线相等的平行四边形是矩形”的逆命题为________________________
12、(4分)式子在实数范围内有意义,则x的取值范围是_____.
13、(4分)如图,有一块矩形纸片ABCD,AB=8,AD=1.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则CF的长为________
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD
(1)求AD的长;
(2)若∠C=30°,求CD的长.
15、(8分)如图,一架梯子AB斜靠在一竖直的墙OA上,这时AO=2m,∠OAB=30°,梯子顶端A沿墙下滑至点C,使∠OCD=60°,同时,梯子底端B也外移至点D.求BD的长度.(结果保留根号)
16、(8分)七巧板是我国祖先的一项卓越创造.下列两幅图中有一幅是小明用如图所示的七巧板拼成的,另一幅则不是.请选出不是小明拼成的那幅图,并说明选择的理由.
17、(10分) (1)先化简,再求值:,其中
(2)解方程:
18、(10分) “绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.
(1)请你为该景区设计购买两种设备的方案;
(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)确定一个的值为________,使一元二次方程无实数根.
20、(4分)如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿A→B→C所走的路程是____m.(结果保留根号)
21、(4分)如图,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点,分别在边,上,小长方形的长与宽的比值为,则的值为_____.
22、(4分)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为 .
23、(4分)如图,函数y=bx和y=ax+4的图象相交于点A(1,3),则不等式bx<ax+4的解集为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲校20名学生成绩的频数分布表和频数分布直方图如下:
b.甲校成绩在的这一组的具体成绩是:
87 88 88 88 89 89 89 89
c.甲、乙两校成绩的平均分、中位数、众数、方差如下:
根据以上图表提供的信息,解答下列问题:
(1)表1中a = ;表2中的中位数n = ;
(2)补全图1甲校学生样本成绩频数分布直方图;
(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是 校的学生(填“甲”或“乙”),理由是 ;
(4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为__________.
25、(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).
(1)写出A、B两点的坐标
(1)经过平移,△ABC的顶点A移到了点A1,画出平移后的△A1B1C1;若△ABC内有一点P(a,b),直接写出按(1)的平移变换后得到对应点P1的坐标.
(3)画出△ABC绕点C旋转180°后得到的△A1B1C1.
26、(12分)如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点.
(1)求直线CD的解析式;
(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据1没有倒数对A进行判断;根据负整数指数幂的意义对B进行判断;根据实数的分类对C进行判断;根据算术平方根的定义对D进行判断.
【详解】
A.1没有倒数,所以A选项错误;
B.3﹣1,所以B选项错误;
C.π是无理数,所以C选项错误;
D.3,所以D选项正确.
故选D.
本题考查了算术平方根:一个正数的正的平方根叫这个数的算术平方根,1的算术平方根为1.也考查了倒数、实数以及负整数指数幂.
2、D
【解析】
一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解;根据图象可求得x>2时y1>y2;根据x=1时求出点B点C的坐标从而求出BC的值;根据图像可确定一次函数和反比例函数在第一象限的增减性.
【详解】
解:①联立一次函数与反比例函数的解析式,
解得,,
∴A(2,2),故①正确;
②由图象得x>2时,y1>y2,故②错误;
③当x=1时,B(1,4),C(1,1),∴BC=3,故③正确;
④一次函数y随x的增大而增大,反比例函数k>0,y随x的增大而减小.故④正确.
∴①③④正确.
故选D.
本题主要是考查学生对两个函数图象性质的理解.这是一道常见的一次函数与反比例函数结合的题目,需要学生充分掌握一次函数和反比例函数的图象特征.理解一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解.
3、D
【解析】
解:根据一次函数的图象可得:a<0,b>0,k<0,则①正确,②错误;根据一次函数和方程以及不等式的关系可得:③和④是正确的
故选:D.
本题考查一次函数的图象及一次函数与不等式.
4、B
【解析】
根据二次根式有意义的条件得到关于x的不等式,解不等式即得答案.
【详解】
解:要使有意义,则,解得.
故选B.
本题考查了二次根式有意义的条件,明确二次根式中被开方数非负是求解的关键.
5、B
【解析】
首先对每一项的方程判断有无实数解,就是看方程的解是否存在能满足方程的左右两边相等的实数.一元二次方程要有实数根,则△≥0;算术平方根不能为负数;分式方程化简后求出的根要满足原方程.
【详解】
解:A项移项得:,等式不成立,所以原方程没有实数解,故本选项错误;
B项移项得,存在实数x使等式成立;所以原方程有实数解,故本选项符合题意;
C项是一元二次方程,△==-15<0,方程无实数根,故本选项错误;
D. 化简分式方程后,求得x=1,检验后,x=1为增根,故原分式方程无解.故本选项错误;
故选B.
本题考查了无理方程、高次方程、分式方程的解法,二次根式的性质,属于基础知识,需熟练掌握.
6、C
【解析】
垂直于弦的直径平分弦,所以①正确;
平分弦(非直径)的直径垂直于弦,所以②错误;
在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;
在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.
故选C.
点睛:本题考查了圆周角定理:在同圆或等圆中,同弧所对的圆周角线段,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
7、B
【解析】
由可设点的坐标为(1,),点的坐标为(1,),点的坐标为(1,)…点的坐标为(1,),把x=1,x=2,x=3代入反比例函数的解析式即可求出的值,再由三角形的面积公式可以得出…的值,即可得出答案.
【详解】
∵
∴设(1,),(1,),(1,)…(1,)
∵、、、…、在反比例函数的图像上
∴
∴
∴
∵
∴
…
∴
因此答案选择B.
本题考查的是反比例函数综合题,熟知反比例函数图像上各点的坐标一定适合此函数的解析式是解答此题的关键.
8、A
【解析】
连接OO′,如图,先利用旋转的性质得BO′=BO=8,∠OBO′=60°,再利用△ABC为等边三角形得到BA=BC,∠ABC=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到;接着证明△BOO′为等边三角形得到∠BOO′=60°,OO′=OB=8;根据旋转的性质得到AO′=OC=10,利用勾股定理的逆定理证明△AOO′为直角三角形,∠AOO′=90°,于是得到∠AOB=150°;最后利用S四边形AOBO′=S△AOO′+S△BOO′可计算出S四边形AOBO′即可判断.
【详解】
连接OO′,如图,
∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,
∴BO′=BO=8,∠OBO′=60°,
∵△ABC为等边三角形,
∴BA=BC,∠ABC=60°,
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,则①正确;
∵△BOO′为等边三角形,
∴OO′=OB=8,所以②正确;
∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,
∴AO′=OC=10,
在△AOO′中,
∵OA=6,OO′=8,AO′=10,
∴OA2+OO′2=AO′2,
∴△AOO′为直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,所以③正确;
,
故④错误,
故选:A.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=-x+1
【解析】
根据平行四边形的性质得到OA∥BC,OA=BC,由已知条件得到C(2,2),设直线AC的解析式为y=kx+b,列方程组即可得到结论.
【详解】
解:∵四边形OABC是平行四边形,
∴OA∥BC,OA=BC,
∵A(1,0),B(6,2),
∴C(2,2),
设直线AC的解析式为y=kx+b,
∴,
解得:,
∴直线AC的解析式为y=-x+1,
故答案为:y=-x+1.
本题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标.
10、1.
【解析】
先通分,再化简,最后代值即可得出结论.
【详解】
∵x=2018,
∴
=
=
=
=x﹣1
=2018﹣1
=1,
故答案为:1.
此题主要考查了分式的加减,找出最简公分母是解本题的关键.
11、矩形是对角线相等的平行四边形
【解析】
把命题的条件和结论互换就得到它的逆命题。
【详解】
命题”两条对角线相等的平行四边形是矩形“的逆命题是矩形是两条对角线相等的平行四边形,
故答案为:矩形是两条对角线相等的平行四边形。
本题考查命题与逆命题,熟练掌握之间的关系是解题关键.
12、x≤1
【解析】
二次根式的被开方数是非负数.
【详解】
解:依题意,得
1﹣x≥0,
解得,x≤1.
故答案是:x≤1.
考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
13、2
【解析】
根据折叠的性质,在第二个图中得到DB=8-1=2,∠EAD=45°;在第三个图中,得到AB=AD-DB=1-2=4,△ABF为等腰直角三角形,然后根据等腰三角形的性质和矩形的性质得到BF=AB=4,再由CF=BC-BF即可求得答案.
【详解】
∵AB=8,AD=1,纸片折叠,使得AD边落在AB边上(第二个图),
∴DB=8-1=2,∠EAD=45°,
又∵△AED沿DE向右翻折,AE与BC的交点为F(第三个图),
∴AB=AD-DB=1-2=4,△ABF为等腰直角三角形,
∴BF=AB=4,
∴CF=BC-BF=1-4=2,
故答案为:2.
本题考查了翻折变换(折叠问题),矩形的性质,等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) 2;(2)
【解析】
分析:(1)根据等角对等边即可证得BF=AB,然后根据FC=BC-BF即可求解;(2)过B作AF的垂线BG,垂足为H. 由(1)得:四边形AFCD为平行四边形且AB=BF=3,在RT△BHF中求得BH的长,利用勾股定理即可求解.
详解:(1)AD∥BC,AE∥CD,
∴四边形AFCD是平行四边形
∴AD=CF
∵AF平分∠BAD
∴∠BAF=∠DAF
∵AD∥BC
∴∠DAF=∠AFB
∴∠BAF=∠AFB
∴AB=BF
∵AB=3,BC=5
∴BF=3
∴FC=5-3=2
∴AD=2.
(2)如图,
过点B作BH⊥AF交AF于H
由(1)得:四边形AFCD为平行四边形且AB=BF=3,
∴AF=CD,AF∥CD
∴FH=AH,∠AFB=∠C
∵∠C=30°
∴∠HFB=30°
∴BF=2BH
∵BF=3
∴BH=
∴FH=,
∴AF=2×=3
∴CD=3.
点睛:本题考查了平行四边形的性质与判定,勾股定理的应用,解本题的关键是正确的作出辅助线.
15、米.
【解析】
梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形即可.
【详解】
解:在中,∵,,
∴AB=2OB,
由勾股定理得:,即,
解得:,
∴,
由题意知,,
∵∠OCD=60°,
∴∠ODC=90°-60°=30°,
∴OC=
在中,根据勾股定理知,,
所以(米).
本题考查正确运用勾股定理.运用勾股定理的数学模型解决现实世界的实际问题.
16、图2不是,图2不满足勾股定理,见解析
【解析】
七巧板有5个等腰直角三角形;有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质可解答.
【详解】
解:图1是由七巧板拼成的,图2不是,
图2中上面的等腰直角三角形和①②不同.
本题运用了等腰直角三角形、全等三角形、正方形、平行四边形的性质,关键是把握好每一块中边的特征.
17、 (1) , ;(2).
【解析】
(1)先进行除法运算,再通分进行化简,将 代入化简结果即可得到答案;
(2) 方程两边都乘以,再移项,系数化为1,检验根的正确性,得到答案.
【详解】
(1)
当时,原式
(2)解方程:
解:方程两边都乘以,得
解这个方程,得
检验:将代入原方程
左边=右边=1
∴原方程的根是
本题考查分式的化简和解分式方程,解题的关键是掌握分式的化简和解分式方程的方法.
18、(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.
【解析】
(1)设该景区购买A种设备为x台、则B种设备购买(10-x)台,其中 0 ≤x ≤10,根据购买的设备日处理能力不低于140吨,列不等式,求出解集后再根据x的范围以及x为整数即可确定出具体方案;
(2)针对(1)中的方案逐一进行计算即可做出判断.
【详解】
(1)设该景区购买设计 A型设备为x台、则 B型设备购买(10-x)台,其中 0 ≤x ≤10,
由题意得:12x+15(10-x)≥140,
解得x≤ ,
∵0 ≤x ≤10,且x是整数,
∴x=3,2,1,0,
∴B型相应的台数分别为7,8,9,10,
∴共有4种方案:
方案一:A型设备 3 台、B型设备 7 台;
方案二:A型设备 2 台、B型设备 8 台;
方案三:A型设备 1 台、B型设备 9 台;
方案四:A型设备 0 台、B型设备 10 台.
(2)方案二费用最少,理由如下:
方案一购买费用: 3 ×3+4.4 ×7=39.8 (万元)<40 (万元),∴费用为 39.8(万元);
方案二购买费用: 2 ×3+4.4 ×8=41.2 (万元)>40 (万元),
∴ 费用为 41.2 ×90%=37.08(万元);
方案三购买费用:3 ×1+4.4 ×9=42.6 (万元)>40 (万元),
∴ 费用为 42.6 ×90%=38.34(万元);
方案四购买费用:4.4 ×10=44 (万元)>40 (万元), ∴ 费用为 44 ×90%=39.6(万元).
∴方案二费用最少,即A型设备2台、B型设备8台时费用最少.
本题考查了一元一次不等式的应用、最优购买方案,弄清题意,找到不等关系列出不等式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据方程无实数根求出b的取值范围,再确定b的值即可.
【详解】
∵一元二次方程x2+2bx+1=0无实数根,
∴4b2-4<0
∴-1因此,b可以取等满足条件的值.
此题考查了一元二次方程根的判别式的应用.此题难度不大,解题的关键是掌握当△<0时,一元二次方程没有实数根.
20、
【解析】
由图形可以看出AB=BC,要求AB的长,可以看到,AB、BC分别是直角边为1、2的两个直角三角形的斜边,运用勾股定理求出计算和即可.
【详解】
解:折线分为AB、BC两段,
AB、BC分别看作直角三角形斜边,
由勾股定理得AB=BC==米.
小明沿图中所示的折线从A⇒B⇒C所走的路程为+=2米
故答案为:2米.
本题考查了勾股定理的简单应用,在图形中正确找到直角三角形是解题关键.
21、
【解析】
连结,作于,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是,进一步得到长与宽的比即可.
【详解】
解:连结,作于,
在矩形内放入四个小正方形和两个小长方形后成中心对称图形,
,,
,
长与宽的比为,
即,
故答案为:.
此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是.
22、105°或45°
【解析】
试题分析:如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,
∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,
当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,
考点:(1)、菱形的性质;(2)、等腰三角形的性质
23、x<1
【解析】
分析:
根据图象和点A的坐标找到直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围即可.
详解:
由图象可知,直线y=bx在直线y=ax+4下方部分所对应的图象在点A的左侧,
∵点A的坐标为(1,3),
∴不等式bx<ax+4的解集为:x<1.
故答案为x<1.
点睛:“知道不等式bx<ax+4的解集是函数图象中:直线y=bx在直线y=ax+4的下方部分图象所对应的自变量的取值范围”是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)1,88.5;(2)见解析;(3)乙,乙的中位数是85,87>85;(4)140
【解析】
(1)根据频数分布表和频数分布直方图的信息列式计算即可得到a的值,根据中位数的定义求解可得n的值;
(2)根据题意补全频数分布直方图即可;
(3)根据甲这名学生的成绩为87分,小于甲校样本数据的中位数88.5分,大于乙校样本数据的中位数85分可得;
(4)利用样本估计总体思想求解可得.
【详解】
(1)a= ,由频数分布表和频数分布直方图中的信息可知,排在中间的两个数是88和89,
∴,
故答案为: 1,88.5;
(2) ∵b=20-1-3-8-6=2,
∴补全图1甲校学生样本成绩频数分布直方图如图所示;
(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是乙校的学生,
理由:乙的中位数是85,87>85,
故答案为:乙,乙的中位数是85,87>85;
(4) ,
∴成绩优秀的学生人数为140人,
故答案为:140人.
此题考查频数分布表,频数分布直方图,中位数的计算方法,利用部分估计总体的方法,正确理解题意是解题的关键.
25、(1)A(﹣1,1),B(﹣3,1);(1)P1(a+4,b+1);(3)见解析.
【解析】
(1)根据直角坐标系写出A、B两点的坐标即可.
(1)首先确定点A的平移路径,再将B和C按照点A的平移路线平移,再将平移点连接起来即可.
(3)首先根据点C将A点和B点旋转 ,再将旋转后的点连接起来即可.
【详解】
解:(1)根据图形得:A(﹣1,1),B(﹣3,1);
(1)如图所示:△A1B1C1,即为所求;
根据题意得:P1(a+4,b+1);
(3)如图所示:△A1B1C1,即为所求.
本题主要考查直角坐标系中图形的平移和旋转,关键在于根据点的平移和旋转来确定图形的平移和旋转.
26、(1)y=3x-10;(2)
【解析】
(1)先把A(6,m)代入y=-x+4得A(6,-2),再利用点的平移规律得到C(4,2),接着利用两直线平移的问题设CD的解析式为y=3x+b,然后把C点坐标代入求出b即可得到直线CD的解析式;
(2)先确定B(0,4),再求出直线CD与x轴的交点坐标为(,0);易得CD平移到经过点B时的直线解析式为y=3x+4,然后求出直线y=3x+4与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.
【详解】
解:(1)把A(6,m)代入y=-x+4得m=-6+4=-2,则A(6,-2),
∵点A向左平移2个单位,再向上平移4个单位,得到点C,
∴C(4,2),
∵过点C且与y=3x平行的直线交y轴于点D,
∴CD的解析式可设为y=3x+b,
把C(4,2)代入得12+b=2,解得b=-10,
∴直线CD的解析式为y=3x-10;
(2)当x=0时,y=4,则B(0,4),
当y=0时,3x-10=0,解得x=,则直线CD与x轴的交点坐标为(,0),
易得CD平移到经过点B时的直线解析式为y=3x+4,
当y=0时,3x+4=0,解得x=,则直线y=3x+4与x轴的交点坐标为(,0),
∴直线CD在平移过程中与x轴交点的横坐标的取值范围为.
本题考查了一次函数与几何变换:求直线平移后的解析式时要注意平移时k的值不变,会利用待定系数法求一次函数解析式.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份江苏省淮安市清江浦中学2025届数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省淮安市涟水县九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省淮安市淮阴师院附中(田家炳中学九年级数学第一学期开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。