|试卷下载
搜索
    上传资料 赚现金
    2022届江苏省淮安市朱坝中学中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    2022届江苏省淮安市朱坝中学中考数学考前最后一卷含解析01
    2022届江苏省淮安市朱坝中学中考数学考前最后一卷含解析02
    2022届江苏省淮安市朱坝中学中考数学考前最后一卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省淮安市朱坝中学中考数学考前最后一卷含解析

    展开
    这是一份2022届江苏省淮安市朱坝中学中考数学考前最后一卷含解析,共24页。试卷主要包含了对于函数y=,下列说法正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为(  )

    A. B. C. D.
    2.下列几何体中,主视图和左视图都是矩形的是(  )
    A. B. C. D.
    3.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x2﹣2x+kb+1=0 的根的情况是( )

    A.有两个不相等的实数根 B.没有实数根
    C.有两个相等的实数根 D.有一个根是 0
    4.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是

    A. B. C. D.
    5.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
    A. B. C. D.
    6.如图的几何体中,主视图是中心对称图形的是(  )
    A. B. C. D.
    7.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为(  )

    A.16cm B.20cm C.24cm D.28cm
    8.下列各图中,∠1与∠2互为邻补角的是( )
    A. B.
    C. D.
    9.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
    阅读时间(小时)
    2
    2.5
    3
    3.5
    4
    学生人数(名)
    1
    2
    8
    6
    3
    则关于这20名学生阅读小时数的说法正确的是( )
    A.众数是8 B.中位数是3
    C.平均数是3 D.方差是0.34
    10.对于函数y=,下列说法正确的是(  )
    A.y是x的反比例函数 B.它的图象过原点
    C.它的图象不经过第三象限 D.y随x的增大而减小
    11.如图是某几何体的三视图及相关数据,则该几何体的全面积是(  )

    A.15π B.24π C.20π D.10π
    12.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )

    A.3 B.3.2 C.4 D.4.5
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).

    14.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.

    15.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.

    16.写出一个一次函数,使它的图象经过第一、三、四象限:______.
    17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
    18.若-2amb4与5a2bn+7是同类项,则m+n= .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.
    ①若点P的纵坐标为2,求直线AB的函数表达式.
    ②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

    20.(6分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.

    (1)求证:四边形AECF为菱形;
    (2)若AB=4,BC=8,求菱形AECF的周长.
    21.(6分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.
    (1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;
    (2)求证:四边形ABCE是矩形.

    22.(8分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧).
    ()求点、点的坐标;
    ()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点.
    ①求证:点是这个新抛物线与直线的唯一交点;
    ②将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围.

    23.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
    摸球总
    次数
    10
    20
    30
    60
    90
    120
    180
    240
    330
    450
    “和为8”出
    现的频数
    2
    10
    13
    24
    30
    37
    58
    82
    110
    150
    “和为8”出
    现的频率
    0.20
    0.50
    0.43
    0.40
    0.33
    0.31
    0.32
    0.34
    0.33
    0.33
    解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
    24.(10分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.

    (1)求证:;
    (2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;
    (3)若PE=1,求△PBD的面积.
    25.(10分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.

    (1)判断:一个内角为120°的菱形  等距四边形.(填“是”或“不是”)
    (2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为   端点均为非等距点的对角线长为  
    (3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.
    26.(12分)计算:|﹣1|+﹣(1﹣)0﹣()﹣1.
    27.(12分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),
    第一次变化:从左边小桶中拿出两个小球放入中间小桶中;
    第二次变化:从右边小桶中拿出一个小球放入中间小桶中;
    第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.
    (1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;
    (2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);
    (3)求第三次变化后中间小桶中有多少个小球?




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.
    【详解】
    解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.
    ∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.
    故选B.
    【点睛】
    本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
    2、C
    【解析】
    主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
    【详解】
    A. 主视图为圆形,左视图为圆,故选项错误;
    B. 主视图为三角形,左视图为三角形,故选项错误;
    C. 主视图为矩形,左视图为矩形,故选项正确;
    D. 主视图为矩形,左视图为圆形,故选项错误.
    故答案选:C.
    【点睛】
    本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
    3、A
    【解析】
    判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.
    【详解】
    ∵一次函数y=kx+b的图像经过第一、三、四象限
    ∴k>0, b<0
    ∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,
    ∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.
    【点睛】
    根的判别式
    4、A。
    【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,

    ∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。
    此时,由AB=2,根据勾股定理,得弦AP=x=。
    ∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。
    又∵当AP=x=1时,△APO为等边三角形,它的面积y=,
    ∴此时,点(1,)应在y=的一半上方,从而可排除C选项。
    故选A。
    5、B
    【解析】
    袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.
    6、C
    【解析】
    解:球是主视图是圆,圆是中心对称图形,故选C.
    7、C
    【解析】
    首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.
    【详解】
    ∵长方形ABCD中,AB∥CD,
    ∴∠BAC=∠DCA,
    又∵∠BAC=∠EAC,
    ∴∠EAC=∠DCA,
    ∴FC=AF=25cm,
    又∵长方形ABCD中,DC=AB=32cm,
    ∴DF=DC-FC=32-25=7cm,
    在直角△ADF中,AD==24(cm).
    故选C.
    【点睛】
    本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.
    8、D
    【解析】
    根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.
    故选D.
    9、B
    【解析】
    A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.
    【详解】
    解: A、由统计表得:众数为3,不是8,所以此选项不正确;
    B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;
    C、平均数=,所以此选项不正确;
    D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此选项不正确;
    故选B.
    【点睛】
    本题考查方差;加权平均数;中位数;众数.
    10、C
    【解析】
    直接利用反比例函数的性质结合图象分布得出答案.
    【详解】
    对于函数y=,y是x2的反比例函数,故选项A错误;
    它的图象不经过原点,故选项B错误;
    它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
    第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
    故选C.
    【点睛】
    此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
    11、B
    【解析】
    解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.
    点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.
    12、B
    【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、②③.
    【解析】
    试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,
    ∴△ADE∽△ABD;
    故①错误;
    ②作AG⊥BC于G,

    ∵∠ADE=∠B=α,tan∠α=,
    ∴,
    ∴,
    ∴cosα=,
    ∵AB=AC=15,
    ∴BG=1,
    ∴BC=24,
    ∵CD=9,
    ∴BD=15,
    ∴AC=BD.
    ∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,
    ∴∠EDB=∠DAC,
    在△ACD与△DBE中,

    ∴△ACD≌△BDE(ASA).
    故②正确;
    ③当∠BED=90°时,由①可知:△ADE∽△ABD,
    ∴∠ADB=∠AED,
    ∵∠BED=90°,
    ∴∠ADB=90°,
    即AD⊥BC,
    ∵AB=AC,
    ∴BD=CD,
    ∴∠ADE=∠B=α且tan∠α=,AB=15,

    ∴BD=1.
    当∠BDE=90°时,易证△BDE∽△CAD,
    ∵∠BDE=90°,
    ∴∠CAD=90°,
    ∵∠C=α且cosα=,AC=15,
    ∴cosC=,
    ∴CD=.
    ∵BC=24,
    ∴BD=24-=
    即当△DCE为直角三角形时,BD=1或.
    故③正确;
    ④易证得△BDE∽△CAD,由②可知BC=24,
    设CD=y,BE=x,
    ∴,
    ∴,
    整理得:y2-24y+144=144-15x,
    即(y-1)2=144-15x,
    ∴0<x≤,
    ∴0<BE≤.
    故④错误.
    故正确的结论为:②③.
    考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.
    14、
    【解析】
    试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.

    ∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
    ∴S△ABC=2S△BCE,S△ABD=2S△ADE,
    ∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
    ∴AC=2BD,
    ∴OD=2OC.
    ∵CD=k,
    ∴点A的坐标为(,3),点B的坐标为(-,-),
    ∴AC=3,BD=,
    ∴AB=2AC=6,AF=AC+BD=,
    ∴CD=k=.
    【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
    15、1.
    【解析】
    连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
    【详解】
    连接BD,如图,

    ∵AD为△ABC的外接圆⊙O的直径,
    ∴∠ABD=90°,
    ∴∠D=90°﹣∠BAD=90°﹣50°=1°,
    ∴∠ACB=∠D=1°.
    故答案为1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.
    16、y=x﹣1 (答案不唯一)
    【解析】
    一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1 (答案不唯一).
    17、15π
    【解析】
    【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
    【详解】设圆锥母线长为l,∵r=3,h=4,
    ∴母线l=,
    ∴S侧=×2πr×5=×2π×3×5=15π,
    故答案为15π.
    【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
    18、-1.
    【解析】
    试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案.
    试题解析:由-2amb4与5a2bn+7是同类项,得

    解得.
    ∴m+n=-1.
    考点:同类项.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.
    【解析】
    (1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
    ②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
    (2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.
    【详解】
    (1)①如图1,


    反比例函数为,
    当时,,

    当时,



    设直线的解析式为,


    直线的解析式为;
    ②四边形是菱形,
    理由如下:如图2,

    由①知,,
    轴,

    点是线段的中点,

    当时,由得,,
    由得,,
    ,,


    四边形为平行四边形,

    四边形是菱形;
    (2)四边形能是正方形,
    理由:当四边形是正方形,记,的交点为,
    ,
    当时,,
    ,,

    ,,,


    .
    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
    20、(1)见解析;(2)1
    【解析】
    (1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
    (2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
    【详解】
    (1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
    ∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
    在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
    又∵OA=OC,∴四边形AECF是平行四边形.
    又∵EF⊥AC,∴平行四边形AECF是菱形;
    (2)设AF=x.
    ∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.

    【点睛】
    本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
    21、 (1)见解析;(2)见解析.
    【解析】
    (1)根据题意作图即可;
    (2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.
    【详解】
    (1)解:如图所示:E点即为所求;

    (2)证明:∵CE⊥BC,
    ∴∠BCE=90°,
    ∵∠ABC=90°,
    ∴∠BCE+∠ABC=180°,
    ∴AB∥CE,
    ∴∠ABE=∠CEB,∠BAC=∠ECA,
    ∵BD为AC边上的中线,
    ∴AD=DC,
    在△ABD和△CED中

    ∴△ABD≌△CED(AAS),
    ∴AB=EC,
    ∴四边形ABCE是平行四边形,
    ∵∠ABC=90°,
    ∴平行四边形ABCE是矩形.
    【点睛】
    本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.
    22、(1)B(-3,0),C(1,0);(2)①见解析;②≤t≤6.
    【解析】
    (1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y=0,即可得解;
    (2)①根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;
    ②当t=0时,直线与抛物线只有一个交点N(3,-6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 +t,0),代入直线解析式:y=-4x+6+t,解得t=;最后一个交点是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.
    【详解】
    (1)因为抛物线的顶点为M(-1,-2),所以对称轴为x=-1,可得:,解得:a=,c=,所以抛物线解析式为y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);
    (2)①翻折后的解析式为y=-x2-x,与直线y=-4x+6联立可得:x2-3x+=0,解得:x1=x2=3,所以该一元二次方程只有一个根,所以点N(3,-6)是唯一的交点;
    ②≤t≤6.
    【点睛】
    本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.
    23、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.
    【解析】
    (1)利用频率估计概率结合表格中数据得出答案即可;
    (2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.
    【详解】
    解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,
    故出现“和为8”的概率是0.33.
    (2)x的值不能为7.理由:假设x=7,

    则P(和为9)=≠,所以x的值不能为7.
    【点睛】
    此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.
    24、 (1)见解析;(2) AC∥BD,理由见解析;(3)
    【解析】
    (1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;
    (2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;
    (3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.
    【详解】
    (1)证明:∵△BCE和△CDP均为等腰直角三角形,
    ∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,
    ∴△BCE∽△DCP,
    ∴;
    (2)解:结论:AC∥BD,
    理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,
    ∴∠PCE=∠BCD,
    又∵,
    ∴△PCE∽△DCB,
    ∴∠CBD=∠CEP=90°,
    ∵∠ACB=90°,
    ∴∠ACB=∠CBD,
    ∴AC∥BD;
    (3)解:如图所示:作PM⊥BD于M,
    ∵AC=4,△ABC和△BEC均为等腰直角三角形,
    ∴BE=CE=4,
    ∵△PCE∽△DCB,
    ∴,即,
    ∴BD=,
    ∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,
    ∴PM=5sin45°=
    ∴△PBD的面积S=BD•PM=××=.

    【点睛】
    本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.
    25、(1)是;(2)见解析;(3)150°.
    【解析】
    (1)由菱形的性质和等边三角形的判定与性质即可得出结论;
    (2)根据题意画出图形,由勾股定理即可得出答案;
    (3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD的度数,即可得出答案.
    【详解】
    解:(1)一个内角为120°的菱形是等距四边形;
    故答案为是;
    (2)如图2,图3所示:
    在图2中,由勾股定理得:
    在图3中,由勾股定理得:
    故答案为
    (3)解:连接BD.如图1所示:
    ∵△ABE与△CDE都是等腰直角三角形,
    ∴DE=EC,AE=EB,
    ∠DEC+∠BEC=∠AEB+∠BEC,
    即∠AEC=∠DEB,
    在△AEC和△BED中, ,
    ∴△AEC≌△BED(SAS),
    ∴AC=BD,
    ∵四边形ABCD是以A为等距点的等距四边形,
    ∴AD=AB=AC,
    ∴AD=AB=BD,
    ∴△ABD是等边三角形,
    ∴∠DAB=60°,
    ∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,
    在△AED和△AEC中,
    ∴△AED≌△AEC(SSS),
    ∴∠CAE=∠DAE=15°,
    ∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,
    ∵AB=AC,AC=AD,

    ∴∠BCD=∠ACB+∠ACD=75°+75°=150°.

    【点睛】
    本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.
    26、1
    【解析】
    试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.
    试题解析:
    解:|﹣1|+﹣(1﹣)0﹣()﹣1
    =1+3﹣1﹣2
    =1.
    点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.
    27、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.
    【解析】
    (1)(2)根据材料中的变化方法解答;
    (3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答.
    【详解】
    解:(1)依题意得:(3+2)÷(3﹣2)=5
    故答案是:5;
    (2)依题意得:a+2+1=a+3;
    故答案是:(a+3)
    (3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,
    依题意得:a﹣1+x=2a
    x=a+1
    所以 a+3﹣x=a+3﹣(a+1)=2
    答:第三次变化后中间小桶中有2个小球.
    【点睛】
    考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.

    相关试卷

    江苏省淮安市朱坝中学2021-2022学年中考数学五模试卷含解析: 这是一份江苏省淮安市朱坝中学2021-2022学年中考数学五模试卷含解析,共19页。试卷主要包含了如果,则a的取值范围是,计算÷的结果是,下列运算正确的是等内容,欢迎下载使用。

    2022年江苏省宝应县中考数学考前最后一卷含解析: 这是一份2022年江苏省宝应县中考数学考前最后一卷含解析,共17页。试卷主要包含了估算的值在等内容,欢迎下载使用。

    2022届江苏省苏州市XX实验中学中考数学考前最后一卷含解析: 这是一份2022届江苏省苏州市XX实验中学中考数学考前最后一卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map