2025届江苏省淮安市九上数学开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AC=6,BC=8,则CD等于( )
A.1B.2C.3D.4.8
2、(4分)关于一次函数,下列结论正确的是( )
A.图象过点B.图象与轴的交点是
C.随的增大而增大D.函数图象不经过第三象限
3、(4分)、、为三边,下列条件不能判断它是直角三角形的是( )
A.B.,,
C.D.,,(为正整数)
4、(4分)使函数y=有意义的自变量x的取值范围是( )
A.x≥6B.x≥0C.x≤6D.x≤0
5、(4分)下列计算正确的是( )
A.B.C.D.
6、(4分)若代数式有意义,则实数x的取值范围是( )
A.x>1B.x≠2C.x≥1且x≠2D.x≥﹣1且x≠2
7、(4分)若一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(8,2),则此一次函数的解析式为( )
A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x﹣1D.y=﹣x+10
8、(4分)在直角坐标系中,线段是由线段平移得到的,已知则的坐标为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方体的棱长为 3,点 M,N 分别在 CD,HE 上,CM= DM,HN=2NE,HC 与 NM 的延长线交于点P,则 PC 的值为_____.
10、(4分)点A(1,3)_____(填“在”、或“不在”)直线y=﹣x+2上.
11、(4分)一元二次方程x2-2x-k=0有两个相等的实数根,则k=________。
12、(4分)如图 是中国在奥运会中获奖牌扇形统计图,由图可知,金牌数占奖牌总数的百分 率是_____,图中表示金牌百分率的扇形的圆心角度数约是____________.(精确到 1°)
13、(4分)在英文单词 believe 中,字母“e”出现的频率是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,点,分别为边,的中点,延长到点使.
求证:四边形是平行四边形.
15、(8分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产、两种产品共50件.已知生产一件种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产种产品的件数为(件),生产、两种产品所获总利润为(元)
(1)试写出与之间的函数关系式:
(2)求出自变量的取值范围;
(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?
16、(8分)(1)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分)
若欲从中表扬2人,请你从平均数的角度分析,那两人将被表扬?
(2)为了提现科学差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数,请你从折合平均数的角度分析,哪两人将被表扬?
17、(10分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(-8,0),点A的坐标为(-6,0).
(1)求k的值;
(2)若点P(x,y)是该直线上的一个动点,探究:当△OPA的面积为27时,求点P的坐标.
18、(10分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.
(1)请你判断所画四边形的性状,并说明理由;
(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
则这50名学生这一周在校的平均体育锻炼时间是____小时.
20、(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x > k1x+b的解集为________________
21、(4分)如图所示,在菱形纸片ABCD中,AB=4,∠BAD=60°,按如下步骤折叠该菱形纸片:
第一步:如图①,将菱形纸片ABCD折叠,使点A的对应点A′恰好落在边CD上,折痕EF分别与边AD、AB交于点E、F,折痕EF与对应点A、A′的连线交于点G.
第二步:如图②,再将四边形纸片BCA′F折叠使点C的对应点C′恰好落在A′F上,折痕MN分别交边CD、BC于点M、N.
第三步:展开菱形纸片ABCD,连接GC′,则GC′最小值是_____.
22、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.
23、(4分)如图,点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则反比例函数的解析式是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).
25、(10分)计算:﹣22﹣|2﹣|+(﹣1)2017×(π﹣3)0﹣()﹣1
26、(12分)如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y=x﹣3的图象l交于点E(m ,﹣5).
(1)m=__________;
(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;
(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:根据勾股定理可求得AB=10,然后根据三角形的面积可得,解得CD=4.8.
故选:D
2、D
【解析】
A、把点的坐标代入关系式,检验是否成立;
B、把y=0代入解析式求出x,判断即可;
C、根据一次项系数判断;
D、根据系数和图象之间的关系判断.
【详解】
解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;
B、把y=0代入y=−2x+3,得x=,所以图象与x轴的交点是(,0),故错误;
C、∵−2<0,∴y随x的增大而减小,故错误;
D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.
故选:D.
本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.
3、C
【解析】
根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.
【详解】
解:A. 即,根据勾股定理逆定理可判断△ABC为直角三角形;
B. ,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;
C. 根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;
D. ,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;
故选:C
本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
4、C
【解析】
根据被开方式是非负数列式求解即可.
【详解】
解:由题意,得
6﹣x≥0,
解得x≤6,
故选:C.
本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
5、C
【解析】
根据二次根式的性质和计算法则分别计算可得正确选项。
【详解】
解:A、 不是同类二次根式,不能合并,故本选项错误;
B、不是同类二次根式,不能合并,故本选项错误;
C、正确;
D、,故故本选项错误。
故选:C
本题考查了二次根式的性质和运算,掌握运算法则是关键。
6、D
【解析】
试题解析:由题意得,且
解得且
故选D.
7、D
【解析】
根据平行直线的解析式的k值相等求出k,然后把点P(﹣1,2)的坐标代入一次函数解析式计算即可得解.
【详解】
解:∵一次函数y=kx+b的图象与直线y=﹣x+1平行,
∴k=﹣1,
∵一次函数过点(8,2),
∴2=﹣8+b
解得b=1,
∴一次函数解析式为y=﹣x+1.
故选:D.
此题考查的是一次函数的图象及性质和求一次函数的解析式,掌握平行直线的解析式的k值相等和利用待定系数法求一次函数解析式是解决此题的关键.
8、B
【解析】
根据点A和点A′的坐标判断出平移方式,根据平移方式可得点的坐标.
【详解】
解:∵点A的坐标为(−2,3),A′的坐标为(3,4),
∴线段AB向上平移1个单位,向右平移5个单位得到线段A′B′,
∵点B的坐标为(−3,1),
∴点B′的坐标为(2,2),
故选:B.
此题主要考查了坐标与图形变化—平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据已知首先求出MC=1,HN=2,再利用平行线分线段成比例定理得到,进而得出PH=6,所以PC=PH-CH=1.
【详解】
解:∵正方体的棱长为1,点M,N分别在CD,HE上,CM=DM,HN=2NE,
∴MC=1,HN=2,
∵DC∥EH,
∴,
∵HC=1,
∴PC=1,
∴PH=6,
∴PC=PH-CH=1.
故答案为:1.
本题考查了平行线分线段成比例定理等知识,根据已知得出PH的长是解决问题的关键.
10、不在.
【解析】
把A(1,3)代入y=﹣x+2验证即可.
【详解】
当x=1时,y=﹣x+2=1,
∴点(1,3)不在直线y=﹣x+2上.
故答案为:不在.
本题考查了一次函数图像上点的坐标特征,一次函数图像上点的坐标满足一次函数解析式.
11、-1
【解析】
根据已知方程有两个相等的实数根,得出b2-4ac=0,建立关于k的方程,解方程求出k的值即可.
【详解】
∵ 一元二次方程x2-2x-k=0有两个相等的实数根,
∴b2-4ac=0,即4+4k=0
解之:k=-1
故答案为:-1
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式:△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
12、51%; 184°.
【解析】
先利用1-28-21得出金牌数占奖牌总数的百分比,然后用360°去乘这个百分比即可.
【详解】
解:1-28%-21%=51%
360°×51%=183.6°184°
故答案为:51%;184°
考查扇形统计图的制作方法,明确扇形统计图的特点,是解决问题的关键.
13、
【解析】
先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.
【详解】
∵英文单词believe共有7个字母,其中有3个e,
∴字母“e”出现的频率是;
故答案为:.
此题考查频数与频率,解题关键在于掌握频率的计算公式即可.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
根据中位线的性质得到,再得到,故可证明.
【详解】
解:∵,分别为,的中点,
∴EF是△ABC的中位线,
∴.
∵,
∴.
∴
∴四边形是平行四边形.
此题主要考查平行四边形的判定,解题的关键是熟知三角形的中位线定理及平行四边形的判定方法.
15、(1)y与x之间的函数关系式是;
(2)自变量x的取值范围是x = 30,31,1;
(3)生产A种产品 30件时总利润最大,最大利润是2元,
【解析】
(1)由于用这两种原料生产A、B两种产品共50件,设生产A种产品x件,那么生产B种产品(50-x)件.由A产品每件获利700元,B产品每件获利1200元,根据总利润=700×A种产品数量+1200×B种产品数量即可得到y与x之间的函数关系式;
(2)关系式为:A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,把相关数值代入得到不等式组,解不等式组即可得到自变量x的取值范围;
(3)根据(1)中所求的y与x之间的函数关系式,利用一次函数的增减性和(2)得到的取值范围即可求得最大利润.
解答:解:(1)设生产A种产品x件,则生产B种产品(50-x)件,
由题意得:y=700x+1200(50-x)=-500x+60000,
即y与x之间的函数关系式为y=-500x+60000;
(2)由题意得,
解得30≤x≤1.
∵x为整数,
∴整数x=30,31或1;
(3)∵y=-500x+60000,-500<0,
∴y随x的增大而减小,
∵x=30,31或1,
∴当x=30时,y有最大值为-500×30+60000=2.
即生产A种产品30件,B种产品20件时,总利润最大,最大利润是2元.
“点睛”本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.
16、(1)应表扬乙、丙两人;(2)应表扬甲、丙两人
【解析】
(1)把各科分数相加,再除以4,求出各自的平均数即可;
(2)按比例计算出平均分,再判断即可.
【详解】
解:(1)甲:(分);
乙:(分);
丙:(分),
应表扬乙、丙两人.
(2)折合后甲:(分);
折合后乙:(分);
折合后丙甲:(分),
应表扬甲、丙两人.
此题考查算术平均数和加权平均数的计算,解题的关键是掌握加权平均数等于各数据与其权的积得和除以数据的个数.在计算时搞清楚数据对应的权.
17、 (1) ; (2) (4,9)或(-20,-9).
【解析】
分析:
(1)将点E(-8,0)代入y=kx+6中即可解得k的值;
(2)由已知易得OA=6,由(1)中所得k的值可得直线EF的解析式为:,设点P的坐标为(x,y),则点P到OA的距离为,由此可得S△OAP=,从而可得,结合解得对应的的值即可得到点P的坐标.
详解:
(1)将点E(-8,0)代入到y=kx+6中,得:-8k+6=0,
解得:;
(2)∵,
∴直线EF的解析式为:.
∵点A的坐标为(-6,0),
∴OA=6,
设点P的坐标为(x,y),则点P到OA的距离为,
∴S△OAP=,解得:,
∵,
∴或,
解得:或,
∴当△OPA的面积为27时,点P的坐标为(4,9)或(-20,-9).
点睛:“设点P的坐标为(x,y),则点P到OA的距离为,由此结合已知条件得到:S△OAP=OA·”是解答本题的关键.
18、(1)详见解析
(2)EF= 8
【解析】
(1)由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF是菱形,
(2)首先连接EF,由AE=AF,∠A=60°,可证得△EAF是等边三角形,则可求得线段EF的长.
【详解】
解:(1)菱形,理由如下:
∵根据题意得:AE=AF=ED=DF,
∴四边形AEDF是菱形;
(2)连接EF,
∵AE=AF,∠A=60°,∴△EAF是等边三角形,
∴EF=AE=8厘米.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6.4
【解析】
试题分析: 体育锻炼时间=(小时).
考点:加权平均数.
20、x<-1;
【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x>k1x+b解集.
【详解】
解:两个条直线的交点坐标为(-1,3),且当x<-1时,直线l2在直线l1的上方,故不等式k2x>k1x+b的解集为x<-1.
故本题答案为:x<-1.
本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
21、
【解析】
注意到G为AA'的中点,于是可知G点的高度终为菱形高度的一半,同时注意到G在∠AFA'的角平分线上,因此作GH⊥AB于H,GP⊥A'F于P,则GP=GH,根据垂线段最短原理可知GH就是所求最小值.
【详解】
解:如图,作GH⊥AB于H,DR⊥AB于R,GP⊥A'F于P,A'Q⊥AB于Q.
∵四边形ABCD是菱形,
∴DA=AB=BC=CD=4,AB∥CD,
∴A'Q=DR,
∵∠BAD=60°,
∴A'Q=DR=AD=2,
∵A'与A关于EF对称,
∴EF垂直平分AA',
∴AG=A'G,∠AFE=∠A'FE,
∴GP=PH,
又∵GH⊥AB,A'Q⊥AB
∴GH∥A'B,
∴GH=A'Q=DR=,
所以GC'≥GP=,当且仅当C'与P重合时,GC'取得最小值.
故答案为:.
熟练掌握菱形的性质,折叠的性质,及最短路径确定的方法,是解题的关键.
22、3
【解析】
由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.
【详解】
由题意可知:中间小正方形的边长为:a-b,
∵每一个直角三角形的面积为:ab=×8=4,
∴4×ab+(a-b)2=25,
∴(a−b)2=25-16=9,
∴a-b=3,
故答案为3.
本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.
23、 (x<0)
【解析】
连结OA,如图,利用三角形面积公式得到,再根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图,
∵AB⊥x轴,
∴OC∥AB,
∴S△OAB=S△CAB=3,
∵
∴|k|=3,
∵k<0,
∴k=-1.
∴反比例函数的解析式为 (x<0)
故答案为: (x<0).
本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
二、解答题(本大题共3个小题,共30分)
24、教学楼A与办公楼B之间的距离大约为94.6米.
【解析】
由已知可得△ABP中∠A=60°∠B=45°且PC=60m,要求AB的长,可以先求出AC和BC的长就可转化为运用三角函数解直角三角形.
【详解】
由题意可知
∠ACP=∠BCP= 90°,∠APC=30°,∠BPC=45°
在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴
在Rt△ACP中,∵∠ACP=90°,∠APC=30°,
∴
∴
≈60+20×1.732 =94.64≈94.6(米)
答:教学楼A与办公楼B之间的距离大约为94.6米.
本题考查了解直角三角形的应用--方向角问题.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
25、
【解析】
直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.
【详解】
解:原式=
=
=.
此题主要考查了实数运算,正确化简各数是解题关键.
26、(1)-2;(2);(3)≤a≤或3≤a≤6.
【解析】
(1)根据点E在一次函数图象上,可求出m的值;
(2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;
(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.
【详解】
解:(1)∵点E(m,−5)在一次函数y=x−3图象上,
∴m−3=−5,
∴m=−2;
(2)设直线l1的表达式为y=kx+b(k≠0),
∵直线l1过点A(0,2)和E(−2,−5),
∴ ,解得,
∴直线l1的表达式为y=x+2,
当y=x+2=0时,x=
∴B点坐标为(,0),C点坐标为(0,−3),
∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;
(3)当矩形MNPQ的顶点Q在l1上时,a的值为;
矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),
∴a的值为+2=;
矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,
矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),
∴a的值为4+2=6,
综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.
本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.
题号
一
二
三
四
五
总分
得分
批阅人
语文
数学
英语
科学
甲
95
95
80
150
乙
105
90
90
139
丙
100
100
85
139
时间(小时)
5
6
7
8
人数
10
15
20
5
2024年江苏省苏州区六校联考数学九上开学复习检测模拟试题【含答案】: 这是一份2024年江苏省苏州区六校联考数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省淮安市清江浦区江浦中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024年江苏省淮安市清江浦区江浦中学九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省淮安市淮阴师院附属中学九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年江苏省淮安市淮阴师院附属中学九上数学开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。