![2024-2025学年江苏省灌南县九上数学开学复习检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16181841/0-1726976716903/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年江苏省灌南县九上数学开学复习检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16181841/0-1726976716969/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年江苏省灌南县九上数学开学复习检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16181841/0-1726976717011/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年江苏省灌南县九上数学开学复习检测试题【含答案】
展开
这是一份2024-2025学年江苏省灌南县九上数学开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平面直角坐标系中,的顶点在轴上,定点的坐标为,若直线经过点,且将平行四边形分割成面积相等的两部分,则直线的表达式( )
A.B.C.D.
2、(4分)如图,平行四边形ABCD中,BD⊥AD,∠A=30°,BD=4,则CD的长为( )
A.2B.4C.4D.8
3、(4分)如图,在四边形中,是边的中点,连接并延长,交的延长线于点,.添加一个条件使四边形是平行四边形,你认为下面四个条件中可选择的是( )
A.B.C.D.
4、(4分)若关于的一元二次方程的一个根是0,则的值是( )
A.1B.-1C.1或-1D.
5、(4分)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )
A.B.
C.D.
6、(4分)在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )
A.测量对角线,看是否互相平分
B.测量两组对边,看是否分别相等
C.测量对角线,看是否相等
D.测量对角线的交点到四个顶点的距离,看是否都相等
7、(4分)若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为( )
A.m=-6,n=-4B.m=O,n=-4
C.m=6,n=4D.m=6,n=-4
8、(4分)下列四个图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若代数式在实数范围内有意义,则x的取值范围是_____.
10、(4分)的平方根是____.
11、(4分)如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.
12、(4分)计算:=_____________.
13、(4分)如图,在△ABC中,A,B两点的坐标分别为A(-1,3),B(-2,0), C(2,2),则△ABC的面积是________ .
三、解答题(本大题共5个小题,共48分)
14、(12分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).
(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;
(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是______分.
15、(8分)已知一次函数的图象过点,且与一次函数的图象相交于点.
(1)求点的坐标和函数的解析式;
(2)在平面直角坐标系中画出,的函数图象;
(3)结合你所画的函数图象,直接写出不等式的解集.
16、(8分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).
(1)判断△ABC的形状,请说明理由.
(2)求△ABC的周长和面积.
17、(10分)如图,中任意一点经平移后对应点为,将作同样的平移得到,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:
(1)画出,并写出点D、E、F的坐标..
(2)若与关于原点O成中心对称,直接写出点D的对应点的坐标.
18、(10分)分解因式:
(1)2xy-x2-y2;
(2)2ax3-8ax.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.
20、(4分)二次根式的值是________.
21、(4分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.
22、(4分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.
23、(4分)将直线向右平移个单位,所得的直线的与坐标轴所围成的面积是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
若购买者一次性付清所有房款,开发商有两种优惠方案:
(方案一)降价8%,另外每套房赠送a元装修基金;
(方案二)降价10%,没有其他赠送.
(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;
(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
25、(10分)如图,以△ABC的三边为边在BC同侧分别作等边三角形,即△ABD,△BCE,△ACF.
(1)四边形ADEF为__________四边形;
(2)当△ABC满足条件____________时,四边形ADEF为矩形;
(3)当△ABC满足条件____________时,四边形ADEF为菱形;
(4)当△ABC满足条件____________时,四边形ADEF不存在.
26、(12分)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,那么称点P是线段AB的“附近点”.
(1)请判断点D(4.5,2.5)是否是线段AB的“附近点”;
(2)如果点H (m,n)在一次函数的图象上,且是线段AB的“附近点”,求m的取值范围;
(3)如果一次函数y=x+b的图象上至少存在一个“附近点”,请直接写出b的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,可用待定系数法确定直线DE的表达式.
【详解】
解:由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,设直线的表达式为,将点,代入得:
解得
所以直线的表达式为
故答案为:A
本题主要考查了平行四边形中心对称的性质及待定系数法求直线表达式,明确直线过平行四边形对角线的交点是解题的关键.
2、D
【解析】
根据30°所对的直角边是斜边的一半即可求出AB,然后利用平行四边形的性质即可求出结论.
【详解】
解:∵BD⊥AD,
∴△ABD为直角三角形,
在Rt△ABD中,BD=4,∠A=30°,
∴AB=2BD=8,
∵四边形ABCD为平行四边形,
∴CD=AB=8,
故选:D.
此题考查的是直角三角形的性质和平行四边形的性质,掌握30°所对的直角边是斜边的一半和平行四边形的对边相等是解决此题的关键.
3、D
【解析】
把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.
【详解】
添加A、,无法得到AD∥BC或CD=BA,故错误;
添加B、,无法得到CD∥BA或,故错误;
添加C、,无法得到,故错误;
添加D、
∵,,,
∴,,∴,
∵,∴,
∴四边形是平行四边形.
故选D.
本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
4、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
5、C
【解析】
根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.
【详解】
解:分四种情况:
①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
故选C.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
6、D
【解析】
根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.
【详解】
解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;
B、两组对边是否分别相等,能判定平行四边形,故本选项错误;
C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;
D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.
故选:D.
本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.
7、B
【解析】
试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.
考点:原点对称
8、A
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据定义进行分析即可.
【详解】
解:A、既是轴对称图形又是中心对称图形,故此选项正确;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,不是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选:A.
此题主要考查了中心对称图形和轴对称图形,关键是掌握中心对称图形和轴对称图形的定义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≤
【解析】
∵代数式在实数范围内有意义,
∴,解得:.
故答案为:.
10、±3
【解析】
∵=9,
∴9的平方根是.
故答案为3.
11、5cm
【解析】
根据正方形的面积可用对角线进行计算解答即可.
【详解】
解:因为正方形AECF的面积为18cm2,
所以AC==6cm,
因为菱形ABCD的面积为24cm2,
所以BD==8cm,
所以菱形的边长==5cm.
故答案为:5cm.
此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
12、
【解析】
根据二次根式的性质和二次根式的化简,可知==.
故答案为.
此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.
13、1
【解析】
利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.
【详解】
解:△ABC的面积=3×4-×4×2-×3×1-×1×3
=12-4-1.1-1.1
=1.
故答案为1
本题考查了坐标与图形性质,主要是在平面直角坐标系中确定点的位置的方法和三角形的面积的求解.
三、解答题(本大题共5个小题,共48分)
14、(1)甲:84.8分;乙:1.8分;(2)1.
【解析】
(1)根据加权平均数的定义即可求解;
(2)根据甲乙的分数求出写作的分值占比,再求出丙的分数即可.
【详解】
解:(1)甲:(分);
乙:(分).
答:甲、乙两位同学的得分分别是84.8、1.8分.
(2)∵甲得分80分,乙得分84分,
∴乙比甲多得4分,
∴现场写作的占比为,丙的现场写作比乙多5分,
∴丙的得分为(分).
故答案为:1.
此题主要考查加权平均数的求解与应用,解题的关键是熟知加权平均数的定义.
15、(1),;(2)见解析;(3).
【解析】
(1)将P(2,m)代入y2=x+1,求出m=3,再把(2,3),(0,-2)代入求出k,b的值即可;
(2)找出两点画出直线即可;
(3)根据画出的函数图象求解即可.
【详解】
(1)把点代入得,
,
∴,
把,代入得,
,
;
(2)经过点,作直线,即为的图象,
经过点,作直线,即为的图象,
如图所示:
(3)由图象知,不等式的解集为:.
本题考查了一次函数与一元一次不等式的关系,也考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的图象与性质等知识.
16、(1)△ABC是直角三角形(2)5
【解析】
(1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形;
(2)根据三角形的周长和面积公式解答即可.
【详解】
(1)△ABC是直角三角形,
由勾股定理可得:,
,
,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,
(2)△ABC的周长为:AC+BC+AB=,
△ABC的面积为:.
本题考查勾股定理逆定理,解题的关键是掌握勾股定理逆定理.
17、(1)D(0,4),E(2,2),F(3,5),画图见解析;(2)(0,-4)
【解析】
(1)根据平面直角坐标系中点的坐标的平移规律求解可得;
(2)根据关于原点中心对称的规律“横纵坐标都互为相反数”即可求得.
【详解】
解:(1)如图,△DEF即为所求,
点D的坐标是,即(0,4);
点E的坐标是,即(2,2);
点F的坐标为,即(3,5);
(2)点D(0,4)关于原点中心对称的的坐标为(0,-4).
本题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.
18、(1)-(x-y)2;(2)2ax(x+2)(x-2).
【解析】
(1)先提取-1,然后利用完全平方公式因式分解即可;
(2)先提取公因式,然后利用平方差公式因式分解即可.
【详解】
(1)原式=-(x2-2xy+y2)=-(x-y)2;
(2)原式=2ax(x2-4)=2ax(x+2)(x-2).
此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.
【详解】
∵D,E分别是AB,BC的中点,
∴AC=2DE=5,AC∥DE,
AC2+BC2=52+122=169,
AB2=132=169,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∵AC∥DE,
∴∠DEB=90°,又∵E是BC的中点,
∴直线DE是线段BC的垂直平分线,
∴DC=BD,
∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=1,
故答案为1.
本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
20、1
【解析】
根据二次根式的性质进行化简即可得解.
【详解】
=|-1|=1.
故答案为:-1.
此题主要考查了二次根式的化简,注意:.
21、m=1.
【解析】
分析:若一元二次方程有实根,则根的判别式△=b2﹣1ac≥2,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为2.
详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=2有实根,
∴△=1﹣8(m﹣5)≥2,且m﹣5≠2,
解得m≤5.5,且m≠5,
则m的最大整数解是m=1.
故答案为m=1.
点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>2,方程有两个不相等的实数根;(2)△=2,方程有两个相等的实数根;(3)△<2方程没有实数根.
22、2
【解析】
根据中位数和众数的定义分析可得答案.
【详解】
解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.
所以这5个数据分别是x,y,2,1,1,且x<y<2,
当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,
所以这组数据可能的最大的和是0+1+2+1+1=2.
故答案为:2.
主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
23、
【解析】
先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果.
【详解】
解:直线向右平移个单位后的解析式为,
令x=0,则y=-9,令y=0,则3x-9=0,解得x=3,
所以直线与x轴、y轴的交点坐标分别为(3,0)、(0,-9),
所以直线与坐标轴所围成的三角形面积是.
故答案为:.
本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.
【解析】
解:(1)当1≤x≤8时,每平方米的售价应为:
y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)
当9≤x≤23时,每平方米的售价应为:
y=4000+(x﹣8)×50=50x+3600(元/平方米).
∴
(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),
按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),
按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),
当W1>W2时,即485760﹣a>475200,
解得:0<a<10560,
当W1<W2时,即485760﹣a<475200,
解得:a>10560,
∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.
本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
25、 (1)平行;(2)∠BAC=150°;(3)AB=AC且∠BAC≠60°;(4)∠BAC=60°.
【解析】
(1)可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;
(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;
(3)利用菱形的性质与判定得出即可;
(4)根据∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.
【详解】
(1)证明:∵△ABD,△BCE都是等边三角形,
∴∠DBE=∠ABC=60°-∠ABE,AB=BD,BC=BE.
在△ABC和△DBE中
,
∴△ABC≌△DBE(SAS).
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四边形ADEF是平行四边形.
(2)∵四边形ADEF是平行四边形,
∴当∠DAF=90°时,四边形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°-∠DAF-∠DAB-∠FAC=360°-90°-60°-60°=150°.
则当∠BAC=150°时,四边形ADEF是矩形;
故答案为:∠BAC=150°;
(3)当AB=AC且∠BAC≠60°时,四边形ADEF是菱形,
理由是:由(1)知:AD=AB=EF,AC=DE=AF,
∵AC=AB,
∴AD=AF,
∵四边形ADEF是平行四边形,AD=AF,
∴平行四边形ADEF是菱形.
故答案为:AB=AC且∠BAC≠60°(或AB=AC≠BC);
(4)当∠BAC=60°时,∠DAF=180°,
此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在;
故答案为:∠BAC=60°.
本题考查了等边三角形的性质及三角形内角和为180°、平行四边形和矩形的判定等知识,熟练掌握相关的定理是解题关键.
26、(1)点D(4.5,2.5)是线段AB的“附近点”;
(2)m的取值范围是;
(3)b的取值范围是
【解析】
(1)点P是线段AB的“附近点”的定义即可判断.
(2)首先求出直线y=x-2与线段AB交于(,3)分①当m≥时,列出不等式即可解决问题.
(3)如图,在Rt△AMN中,AM=1,∠MAN=45°,则点M坐标(2-,3+),在Rt△BEF中,BE=1,∠EBF=45°,则点E坐标(6+,3-),
分别求出直线经过点M点E时的b的值,即可解决问题.
解:(1)∵点D到线段AB的距离是0.5,
∴0.5
相关试卷
这是一份2024-2025学年江苏省阜宁县数学九上开学教学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省沅陵县数学九上开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。