2025届江苏省常州市武进星辰实验学校数学九年级第一学期开学达标检测模拟试题【含答案】
展开
这是一份2025届江苏省常州市武进星辰实验学校数学九年级第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列分解因式正确的是
A.B.
C.D.
2、(4分)若,若,则的度数是( )
A.B.C.D.
3、(4分)某校八班名同学在分钟投篮测试中的成绩如下:,,,,,(单位:个),则这组数据的中位数、众数分别是( )
A.,B.,C.,D.,
4、(4分)若二次根式有意义,则x的取值范围是( )
A.x>B.x≥C.x≤D.x≤5
5、(4分)如图,正方形的对角线、交于点,以为圆心,以长为半径画弧,交于点,连接,则的度数为( )
A.45°B.60°C.1.5°D.75°
6、(4分)将分式方程去分母,得到正确的整式方程是( )
A.B.C.D.
7、(4分)一组数据为4,5,5,6,若添加一个数据5,则发生变化的统计量是( )
A.平均数B.众数C.中位数D.方差
8、(4分)某射击运动员在一次射击训练中,共射击了次,所得成绩(单位:环)为、、、、、,这组数据的中位数为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,于点E,于点F,,求证:.
试将下面的证明过程补充完整填空:
证明:,已知
______
同位角相等,两直线平行,
两直线平行,同旁内角互补,
又已知,
______,同角的补角相等
______内错角相等,两直线平行,
______
10、(4分)如图,数轴上点O对应的数是0,点A对应的数是3,AB⊥OA,垂足为A,且AB=2,以原点O为圆心,以OB为半径画弧,弧与数轴的交点为点C,则点C表示的数为_____.
11、(4分)如图,已知矩形ABCD中,,,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长等于_____cm。
12、(4分)若将直线y=﹣2x向上平移3个单位后得到直线AB,那么直线AB的解析式是_____.
13、(4分)分解因式:m2 n mn =_____。
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:请选择恰当的方法解方程
(1)3(x﹣5)2=2(5﹣x);
(2)3x2+5(2x+1)=1.
15、(8分)一条笔直的公路上有甲乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地.设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象.
(1)李越骑车的速度为______米/分钟;
(2)B点的坐标为______;
(3)李越从乙地骑往甲地时,s与t之间的函数表达式为______;
(4)王明和李越二人______先到达乙地,先到______分钟.
16、(8分)已知:如图,在四边形中,,为对角线的中点,为的中点,为的中点.求证:
17、(10分)某公司对应聘者A,B进行面试,并按三个方面给应聘者打分,每方面满分20分,打分结果如下表:
根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:1:3的比例确定两人的成绩,通过计算说明谁将被录用.
18、(10分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量与燃烧时间(分钟)成正比例;烧灼后,与成反比例(如图所示).现测得药物分钟燃烧完,此时教室内每立方米空气含药量为.研究表明当每立方米空气中含药量低于时,对人体方能无毒作用,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室.
20、(4分)如图,平行四边形中,,,∠,点是的中点,点在的边上,若为等腰三角形,则的长为__________.
21、(4分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 .
22、(4分)式子在实数范围内有意义,则x的取值范围是_____.
23、(4分)若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S△AGD=S△OGD④四边形AEFG是菱形( )
A.1个B.2个C.3个D.4个
25、(10分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.
26、(12分)甲、乙两个工程队需完成A、B两个工地的工程.若甲、乙两个工程队分别可提供40个和50个标准工作量,完成A、B两个工地的工程分别需要70个和20个标准工作量,且两个工程队在A、B两个工地的1个标准工作量的成本如下表所示:
设甲工程队在A工地投入x(20≤x≤40)个标准工作量,完成这两个工程共需成本y元.
(1)求y与x之间的函数关系式;
(2)请判断y是否能等于62000,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.
【详解】
A. ,分解因式不正确;
B. ,分解因式不正确;
C. ,分解因式正确;
D. 2,分解因式不正确.
故选:C
本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.
2、A
【解析】
根据相似三角形的对应角相等可得∠D=∠A.
【详解】
∵△ABC∽△DEF,∠A=50°,
∴∠D=∠A=50°.
故选:A.
此题考查相似三角形的性质,熟记相似三角形的对应角相等是解题的关键.
3、D
【解析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:把数据从小到大的顺序排列为:2,1,1,8,10;
在这一组数据中1是出现次数最多的,故众数是1.
处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.
故选:D.
此题考查中位数与众数的意义,掌握基本概念是解决问题的关键
4、B
【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,5x﹣1≥0,
解得,x≥,
故选B.
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.
5、C
【解析】
由正方形的性质得出∠CBD =45°,证明△BCE是等腰三角形即可得出∠BCE的度数.
【详解】
解:∵四边形ABCD是正方形,
∴∠CBD =45°,BC =BA,
∵BE= BA,
∴BE= BC,
∴∠BCE=(180°-45°)÷2=1.5°.
故选:C.
本题考查了正方形的性质、等腰三角形的性质;熟练掌握正方形和等腰三角形的性质进行求解是解决问题的关键.
6、A
【解析】
将分式方程去分母得,故选A.
7、D
【解析】
依据的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.
【详解】
解:原数据的4,5,5,6的平均数为=5,中位数为5,众数为5,方差为×[(4-5)2+(5-5)2×2+(6-5)2]=0.5
新数据4,5,5,5,6的平均数为=5,中位数为5,众数为5,方差为×[(4-5)2+(5-5)2×3+(6-5)2]=0.4;
∴添加一个数据5,方差发生变化,
故选:D.
本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.
8、B
【解析】
先将题目中的数据按从小到大的顺序排列,然后根据中位数的定义分析即可.
【详解】
将题目中的数据按从小到大的顺序排列:6,7,7,8,8,9;中间数字为7和8;
中位数为
故选B
本题考查中位数的运算,注意要先将数据按从小到大的顺序排列,再根据中位数的定义分析求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、垂直的定义;;BC;两直线平行,同位角相等
【解析】
根据垂线的定义结合平行线的判定定理可得出,由平行线的性质可得出,结合可得出,从而得出。根据平行线的性质即可得出,此题得解.
【详解】
证明:,
(垂直的定义),
(同位角相等,两直线平行),
(两直线平行,同旁内角互补),
又,
(同角的补角相等),
(内错角相等,两直线平行),
(两直线平行,同位角相等).
故答案为:垂直的定义;;;两直线平行,同位角相等.
本题考查了平行线的判定与性质以及垂线的定义,熟练掌握平行线的判定与性质定理是解题的关键.
10、
【解析】
首先利用勾股定理计算出OB的长,然后再由题意可得BO=CO,进而可得CO的长.
【详解】
∵数轴上点A对应的数为3,
∴AO=3,
∵AB⊥OA于A,且AB=2,
∴BO===,
∵以原点O为圆心,OB为半径画弧,交数轴于点C,
∴OC的长为,
故答案为:.
此题主要考查了实数与数轴,勾股定理,关键是利用勾股定理计算出BO的长.
11、20
【解析】
连接AC、BD,根据三角形的中位线求出HG,GF,EF,EH的长,再求出四边形EFGH的周长即可.
【详解】
如图,连接AC、BD,
四边形ABCD是矩形,
AC=BD=8cm,
E、F、G、H分别是AB、BC、CD、DA的中点,
HG=EF=AC=4cm,EH=FG=BD=4cm,
四边形EFGH的周长等于
4+4+4+4=16cm.
本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.
12、y=﹣2x+1.
【解析】
利用直线的平移规律:(1)k不变;(2) “上加下减,左加右减”的原则进行解答即可.
【详解】
∵将直线y=﹣2x向上平移1个单位,
∴y=﹣2x+1,
即直线的AB的解析式是y=﹣2x+1.
故答案为:y=﹣2x+1.
本题考查了一次函数图象平移的特点.熟练应用一次函数平移规律是解题的关键.
13、n(m-)2
【解析】
原式提取n,再利用完全平方公式分解即可.
【详解】
解:原式=n(m2-m+)=n(m-)2,
故答案为:n(m-)2
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)(2)
【解析】
(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)整理后求出b2-4ac的值,再代入公式求出即可.
【详解】
解:(1)3(x﹣5)2=2(5﹣x),
3(x﹣5)2+2(x﹣5)=1,
(x﹣5)[3(x﹣5)+2]=1,
x﹣5=1,3(x﹣5)+2=1,
x1=5,x2=﹣;
(2)3x2+5(2x+1)=1,
整理得:3x2+11x+5=1,
b2﹣4ac=112﹣4×3×5=41,
x=,
x1=,x2=.
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
15、(1)240;(2)(12,2400);(1)s=240t;(4)李越,1
【解析】
(1)由函数图象中的数据可以直接计算出李越骑车的速度;
(2)根据题意和图象中点A的坐标可以直接写出点B的坐标;
(1)根据函数图象中的数据和待定系数法,可得s与t的函数表达式;
(4)根据函数图象可以得到谁先到达乙地,并求出先到几分钟.
【详解】
(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,
故答案为:240;
(2)由题意可得,10+2=12(分钟),
点B的坐标为(12,2400),
故答案为:(12,2400);
(1)设李越从乙地骑往甲地时,s与t之间的函数表达式为:s=kt,
由题意得:2400=10k,得:k=240,
即李越从乙地骑往甲地时,s与t之间的函数表达式为:s=240t,
故答案为:s=240t;
(4)由图象可知,李越先到达乙地,先到达:2400÷96-(10×2+2)=1(分钟),
故答案为:李越,1.
本题主要考查一次函数的实际应用,掌握一次函数的图象和性质,并利用数形结合的思想,是解题的关键.
16、见解析.
【解析】
根据中位线定理和已知,易证明△NMP是等腰三角形,根据等腰三角形的性质即可得到结论.
【详解】
解:证明:∵是中点,是中点,
∴是的中位线,
∴,
∵是中点,是中点,
∴是的中位线,
∴,
∵,
∴,
∴是等腰三角形,
∴.
此题主要考查了三角形中位线定理,以及等腰三角形的判定与性质,熟练掌握等腰三角形的性质是解题的关键.
17、应聘者将被录用
【解析】
根据加权平均数的定义分别计算A、B两人的成绩,比较即得答案.
【详解】
解:的成绩:,
的成绩:,
∵,
∴应聘者将被录用.
本题考查了加权平均数的计算,属于基础题型,正确理解题意、熟练掌握计算方法是解答的关键.
18、BC边上的高AD=.
【解析】
作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.
【详解】
作AD⊥BC于D,
由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,
∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,
解得,CD=1,
则BC边上的高AD=.
考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先求得反比例函数的解析式,然后把代入反比例函数解析式,求出相应的即可;
【详解】
解:设药物燃烧后与之间的解析式,把点代入得,解得,
关于的函数式为:;
当时,由;得,所以1分钟后学生才可进入教室;
故答案为:1.
本题考查了一次函数与反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
20、或或1
【解析】
根据点P所在的线段分类讨论,再分析每种情况下腰的情况,然后利用直角三角形的性质和勾股定理分别求值即可.
【详解】
解:①当点P在AB上时,由∠ABC=120°,此时只能是以∠PBE为顶角的等腰三角形,BP=BE,过点B作BF⊥PE于点F,如下图所示
∴∠FBE=∠ABC=10°,EP=2EF
∴∠BEF=90°-∠FBE=30°
∵,点是的中点
∴BE=
在Rt△BEF中,BF=
根据勾股定理:EF=
∴EP=2EF=;
②当点P在AD上时,过点B作BF⊥AB于F,过点P作PG⊥BC,如下图所示
∵∠ABC=120°
∴∠A=10°
∴∠ABF=90°-∠A=30°
在Rt△ABF中AF=,BF=
∴BP≥BF>BE,EP≥BF>BE
∴此时只能是以∠BPE为顶角的等腰三角形,BP=PE,
∴PG=BF=,EG=
根据勾股定理:EP=;
③当点P在CD上时,过点E作EF⊥CD于F,过点B作BG⊥CD
由②可知:BE的中垂线与CD无交点,
∴此时BP≠PE
∵∠A=10°,四边形ABCD为平行四边形
∴∠C=10°
在Rt△BCG中,∠CBG=90°-∠C=30°,CG=
根据勾股定理:BG=
∴BP≥BG>BE
∵EF⊥CD,BG⊥CD,点E为BC的中点
∴EF为△BCG的中位线
∴EF=
∴此时只能是以∠BEP为顶角的等腰三角形,BE=PE=1.
综上所述:的长为或或1.
故答案为:或或1
此题考查的是等腰三角形的性质、直角三角形的性质和勾股定理,掌握三线合一、30°所对的直角边是斜边的一半、利用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
21、20%.
【解析】
解答此题利用的数量关系是:商品原来价格×(1-每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.
【详解】
设这种商品平均每次降价的百分率为x,根据题意列方程得,
125(1−x)2=80,
解得x1=0.2=20%,x2=1.8(不合题意,舍去);
故答案为20%
本题考查了一元二次方程的应用,读懂题意列出关系式是解题的关键.
22、x≤1
【解析】
二次根式的被开方数是非负数.
【详解】
解:依题意,得
1﹣x≥0,
解得,x≤1.
故答案是:x≤1.
考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
23、1
【解析】
先根据平均数的定义求出x的值,然后根据中位数的定义求解.
【详解】
由题意可知,(1+a+7+8+3)÷5=5,
a=3,
这组数据从小到大排列3,3,1,7,8,
所以,中位数是1.
故答案是:1.
考查平均数与中位数的意义.
平均数是指在一组数据中所有数据之和再除以数据的个数.
中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
二、解答题(本大题共3个小题,共30分)
24、C
【解析】
①由四边形ABCD是正方形和折叠性得出∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,再由三角形的内角和求出∠FGD=112.5°.故①正确,
②④由四边形ABCD是正方形和折叠,判断出四边形AEFG是平行四边形,再由AE=EF,得出四边形AEFG是菱形.利用45°的直角三角形得出GF=OG,BE=EF=GF,得出BE=2OG,故②④正确.
③由四边形ABCD是正方形和折叠性,得到△ADG≌△FDG,所以S△AGD=S△FDG≠S△OGD故③错误.
【详解】
①由四边形ABCD是正方形和折叠性知,
∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,
∴∠FGD=180°﹣∠DFG﹣∠FDG=180°﹣45°﹣22.5°=112.5°,
故①正确,
②由四边形ABCD是正方形和折叠性得出,
∠DAG=∠DFG=45°,∠EAD=∠EFD=90°,AE=EF,
∵∠ABF=45°,
∴∠ABF=∠DFG,
∴AB∥GF,
又∵∠BAC=∠BEF=45°,
∴EF∥AC,
∴四边形AEFG是平行四边形,
∴四边形AEFG是菱形.
∵在Rt△GFO中,GF=OG,
在Rt△BFE中,BE=EF=GF,
∴BE=2OG,
故②④正确.
③由四边形ABCD是正方形和折叠性知,
AD=FD,AG=FG,DG=DG,
在△ADG和△FDG中,
,
∴△ADG≌△FDG(SSS),
∴S△AGD=S△FDG≠S△OGD
故③错误.
正确的有①②④,
故选C.
本题主要考查了折叠问题,菱形的判定及正方形的性质,解题的关键是明确图形折叠前后边及角的大小没有变化.
25、证明见解析.
【解析】
根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,
∵E、F分别为AD、BC边的中点,
∴AE=DE=AD,CF=BF=BC,
∴DE∥BF,DE=BF,
∴四边形BFDE是平行四边形,
∴BE∥DF,∴∠AEG=∠ADF,
∴∠AEG=∠CFH,
在△AEG和△CFH中,
∵∠EAG=∠FCH,AE=CF,∠AEG=∠CFH,
∴△AEG≌△CFH(ASA),
∴AG=CH.
26、 (1) ;(2) 不能等于.
【解析】
(1)根据A工地成本=甲在A的成本+乙在A的成本;B工地成本=甲在B的成本+乙在B的成本;总成本=A工地成本+ B工地成本.列出方程解出即可.
(2)把y=62000代入(1)中求出x,对比已知条件的范围即能得出答案;
【详解】
解:(1)
.
(2)当,解得,
∵,∴不符合题意,
∴不能等于.
本题考查用方程的知识解决工程问题的应用题,解题的关键是学会利用未知数,构建方程解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
A工地
B工地
甲工程队
800元
750元
乙工程队
600元
570元
相关试卷
这是一份2025届江苏省常州市武进区数学九年级第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省常州市武进星辰实验学校2023-2024学年九上数学期末质量检测模拟试题含答案,共7页。
这是一份2023-2024学年江苏省常州市星辰实验学校九年级数学第一学期期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,反比例函数,下列说法不正确的是等内容,欢迎下载使用。