|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届湖南省长沙市中学雅培粹学校数学九上开学学业水平测试模拟试题【含答案】
    立即下载
    加入资料篮
    2025届湖南省长沙市中学雅培粹学校数学九上开学学业水平测试模拟试题【含答案】01
    2025届湖南省长沙市中学雅培粹学校数学九上开学学业水平测试模拟试题【含答案】02
    2025届湖南省长沙市中学雅培粹学校数学九上开学学业水平测试模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届湖南省长沙市中学雅培粹学校数学九上开学学业水平测试模拟试题【含答案】

    展开
    这是一份2025届湖南省长沙市中学雅培粹学校数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)将方程x2+4x+1=0配方后,原方程变形为( )
    A.(x+2)2=3B.(x+4)2=3C.(x+2)2=﹣3D.(x+2)2=﹣5
    2、(4分)在一幅长,宽的硅藻泥风景画的四周,增添一宽度相同的装饰纹边,制成一幅客厅装饰画,使得硅藻泥风景画的面积是整个客厅装饰画面积的,设装饰纹边的宽度为,则可列方程为( )
    A.
    B.
    C.
    D.
    3、(4分)道路千万条,安全第一条,下列交通标志是中心对称图形的为( )
    A.B.C.D.
    4、(4分)菱形的对角线相交于点,若,菱形的周长为,则对角线的长为( )
    A.B.C.8D.
    5、(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的长方形的周长为10,则该直线的函数表达式是( )
    A.y=x+5B.y=x+10C.y=-x+5D.y=-x+10
    6、(4分)到△ABC的三条边距离相等的点是△ABC的( ).
    A.三条中线的交点B.三条边的垂直平分线的交点
    C.三条高的交点D.三条角平分线的交点
    7、(4分)张浩调查统计了他们家5月份每次打电话的通话时长,并将统计结果进行分组(每组含量最小值,不含最大值),将分组后的结果绘制成如图所示的频数分布直方图,则下列说法中不正确的是( )
    A.张浩家5月份打电话的总频数为80次
    B.张浩家5月份每次打电话的通话时长在5﹣10分钟的频数为15次
    C.张浩家5月份每次打电话的通话时长在10﹣15分钟的频数最多
    D.张浩家5月份每次打电话的通话时长在20﹣25分钟的频率为6%
    8、(4分)如图,矩形中,,,点从点出发,沿向终点匀速运动,设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是( )
    A. B. C. D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).
    10、(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.
    11、(4分)如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是 .
    12、(4分)如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=上;将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____.
    13、(4分)一个小区大门的栏杆如图所示,垂直地面于,平行于地面,那么_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,平行四边形ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,且∠EAC=90°,AE2=EB•EC.
    (1)求证:四边形ABCD是矩形;
    (2)延长DB、AE交于点F,若AF=AC,求证:AE=BF.
    15、(8分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.
    16、(8分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)

    (1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:
    (2)在(1)所画的平行四边形中任选-一个,求出其面积.
    17、(10分)某食品商店将甲、乙、丙3种糖果的质量按配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/、20元/、27元/.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.
    18、(10分)已知△ABC的三条边长分别为2,5,6,在△ABC所在平面内画一条直线,将△ABC分成两个三角形,使其中一个三角形为等腰三角形.
    (1)这样的直线最多可以画 条;
    (2)请在三个备用图中分别画出符合条件的一条直线,要求每个图中得到的等腰三角形腰长不同,尺规作图,不写作法,保留作图痕迹.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)直线y=3x﹣1向上平移4个单位得到的直线的解析式为:_____.
    20、(4分)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
    21、(4分)如图,将三个边长都为a的正方形一个顶点重合放置,则∠1+∠2+∠3=_______.
    22、(4分)如图,是矩形的边上一点,以为折痕翻折,使得点的对应点落在矩形内部点处,连接,若,,当是以为底的等腰三角形时, ___________.
    23、(4分)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平行四边形中,于E,于F.若,平行四边形周长为40,求平行四边形的面积.
    25、(10分)已知(如图),点分别在边上,且四边形是菱形
    (1)请使用直尺与圆规,分别确定点的具体位置(不写作法,保留画图痕迹);
    (2)如果,点在边上,且满足,求四边形的面积;
    (3)当时,求的值。
    26、(12分)某校在招聘数学教师时以考评成绩确定人选.甲、乙两位高校毕业生的各项考评成绩如下.如果按笔试成绩占30%、模拟上课占60%、答辩占10%来计算各人的考评成绩,那么谁将优先录取?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    【详解】
    ∵x2+4x+1=0,
    ∴x2+4x=−1,
    ∴x2+4x+4=−1+4,
    ∴(x+2) 2=3.
    故选:A.
    此题考查解一元二次方程-配方法,掌握运算法则是解题关键
    2、B
    【解析】
    设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(1+2x)cm,根据矩形的面积公式结合硅藻泥风景画的面积是整个客厅装饰画面积的78%,即可得出关于x的一元二次方程,此题得解.
    【详解】
    解:设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(1+2x)cm,
    根据题意得:(200+2x)(1+2x)×78%=200×1.
    故选:B.
    本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
    3、B
    【解析】
    结合中心对称图形的概念求解即可.
    【详解】
    解:A、不是中心对称图形,本选项错误;
    B、是中心对称图形,本选项正确;
    C、不是中心对称图形,本选项错误;
    D、不是中心对称图形,本选项错误.
    故选:B.
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    4、C
    【解析】
    根据菱形周长可以计算AB,已知AC则可求AO;根据菱形性质可知:菱形对角线互相垂直;利用勾股定理可求BO,进而求出BD.
    【详解】
    解:如图:∵四边形是菱形
    ∴ , ,⊥
    ∵菱形的周长为



    根据勾股定理,

    本题考查了菱形性质的应用,难度较小,熟练掌握菱形的性质是解答本题的关键.
    5、C
    【解析】
    设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D. C,
    ∵P点在第一象限,
    ∴PD=y,PC=x,
    ∵矩形PDOC的周长为10,
    ∴2(x+y)=10,
    ∴x+y=5,即y=−x+5,
    故选C.
    点睛:本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x,y之间的关系是解题的关键.
    6、D
    【解析】
    根据角平分线的性质求解即可.
    【详解】
    到△ABC的三条边距离相等的点是△ABC的三条角平分线的交点
    故答案为:D.
    本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键.
    7、D
    【解析】
    根据频数、总数以及频率的定义即可判断;频数指某个数据出现的次数;频率是频数与总数之比
    【详解】
    解:A、正确.因为20+15+25+15+5=80故正确.
    B、正确.由图象可知张浩家5月份每次打电话的通话时长在5﹣10分钟的频数为15次.故正确.
    C、正确.由图象可知张浩家5月份每次打电话的通话时长在10﹣15分钟的频数最多.故正确.
    D、错误.张浩家5月份每次打电话的通话时长在20﹣25分钟的频率为=.故错误.
    故选:D.
    此题主要考查频数分布直方图,熟练掌握频数、总数以及频率之间的关系是解题关键
    8、C
    【解析】
    首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的长度一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.
    【详解】
    解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);
    因为从点C到点D,△ABP的面积一定:2×1÷2=1,
    所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),
    所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:

    故选:C.
    此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、随机
    【解析】
    根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件. 可能事件是指在一定条件下,一定不发生的事件. 不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答
    【详解】
    从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件
    此题考查随机事件,难度不大
    10、1.
    【解析】
    试题解析:∵由题意可知,AQ是∠DAB的平分线,
    ∴∠DAQ=∠BAQ.
    ∵四边形ABCD是平行四边形,
    ∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,
    ∴∠DAQ=∠DAQ,
    ∴△AQD是等腰三角形,
    ∴DQ=AD=2.
    ∵DQ=2QC,
    ∴QC=DQ=,
    ∴CD=DQ+CQ=2+=,
    ∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.
    故答案为1.
    11、24.
    【解析】
    试题分析: ∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB=∠DAB,∠PBA=∠ABC,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AB∥CD,∴∠PAB=∠DPA,∴∠DAP=∠DPA,∴AD=DP=5,同理:PC=CB=5,
    即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24.
    考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.
    12、1
    【解析】
    根据直线的关系式可以求出A、B的坐标,由正方形可以通过作辅助线,构造全等三角形,进而求出C、D的坐标,求出反比例函数的关系式,进而求出C点 平移后落在反比例函数图象上的点G的坐标,进而得出平移的距离.
    【详解】
    当x=0时,y=4,∴B(0,4),当y=0时,x=1,
    ∴A(1,0),
    ∴OA=1,OB=4,
    ∵ABCD是正方形,
    ∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,
    过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,
    ∴∠ABO=∠BCN=∠DAM,
    ∵∠AOB=∠BNC=∠AMD=90°,
    ∴△AOB≌△BNC≌△DMA (AAS),
    ∴OA=DM=BN=1,AM=OB=CN=4
    ∴OM=1+4=5,ON=4+1=5,
    ∴C(4,5),D(5,1),
    把D(5,1)代入y=得:k=5,
    ∴y=,
    当y=5时,x=1,
    ∴E(1,5),
    点C向左平移到E时,平移距离为4﹣1=1,即:a=1,
    故答案为:1.
    考查反比例函数的图象和性质、正方形的性质、全等三角形的判定和性质以及平移的性质等知识,确定平移前后对应点C、E的坐标是解决问题的关键.
    13、
    【解析】
    作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.
    【详解】
    解:作CH⊥AE于H,如图,
    ∵AB⊥AE,CH⊥AE,
    ∴AB∥CH,
    ∴∠ABC+∠BCH=180°,
    ∵CD∥AE,
    ∴∠DCH+∠CHE=180°,
    而∠CHE=90°,
    ∴∠DCH=90°,
    ∴∠ABC+∠BCD=180°+90°=270°.
    故答案为270°.
    本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析
    【解析】
    (1)根据AE2=EB•EC证明△AEB∽△CEA,即可得到∠EBA=∠EAC=90°,从而说明平行四边形ABCD是矩形;
    (2)根据(1)中△AEB∽△CEA可得,再证明△EBF∽△BAF可得,结合条件AF=AC,即可证AE=BF.
    【详解】
    证明:(1)∵AE2=EB•EC

    又∵∠AEB=∠CEA
    ∴△AEB∽△CEA
    ∴∠EBA=∠EAC
    而∠EAC=90°
    ∴∠EBA=∠EAC=90°
    又∵∠EBA+∠CBA=180°
    ∴∠CBA=90°
    而四边形ABCD是平行四边形
    ∴四边形ABCD是矩形
    即得证.
    (2)∵△AEB∽△CEA
    ∴即,∠EAB=∠ECA
    ∵四边形ABCD是矩形
    ∴OB=OC
    ∴∠OBC=∠ECA
    ∴∠EBF=∠OBC=∠ECA=∠EAB
    即∠EBF=∠EAB
    又∵∠F=∠F
    ∴△EBF∽△BAF


    而AF=AC
    ∴BF=AE
    即AE=BF得证.
    本题考查的是相似三角形的判定与性质及矩形的性质,利用三角形的相似进行边与角的转化是解决本题的关键.
    15、详见解析
    【解析】
    由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.
    【详解】
    证明:∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠1=∠EAF,
    ∵∠1=∠1,
    ∴∠EAF=∠1,
    ∴AE∥CF,
    ∴四边形AECF是平行四边形.
    本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.
    16、(1)见解析;(2)见解析
    【解析】
    (1)根据平行四边形的性质即可得到结论;
    (2)根据平行四边形的面积公式计算即可得到结论.
    【详解】
    解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;
    (2)菱形DBFG面积=
    =
    =12
    或平行四边形面积=
    =15
    本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
    17、这样定价不合理,理由见解析
    【解析】
    根据加权平均数的概念即可解题.
    【详解】
    解:这样定价不合理.
    (元/).
    答:该什锦糖果合理的单价为18.7元/.
    本题考查了加权平均数的实际计算,属于简单题,熟悉加权平均数的概念是解题关键.
    18、(1)7;(2)见解析
    【解析】
    (1)根据等腰三角形的性质分别利用AB.、BC、AC为底以及AB、BC、AC为腰得出符合题意的图形即可;(2)根据等腰三角形和垂直平分线的性质作图即可.
    【详解】
    解:(1)以点A为圆心,AB为半径做弧,交AC于点M1;以点C为圆心,BC为半径做弧,交AC于点M2;以点B为圆心,BC为半径做弧,交AC于点M3;交AB于点M4;作AB的垂直平分线,交AC于点M5;作AC的垂直平分线,交AB于点M6;作BC的垂直平分线,交AC于点M7;共7条
    故答案为:7
    (2)如图即为所求.
    说明:如上7种作法均可.
    此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=1x+1.
    【解析】
    根据平移k不变,b值加减即可得出答案.
    【详解】
    y=1x-1向上平移4个单位则:
    y=1x-1+4=1x+1,
    故答案为:y=1x+1.
    本题考查图形的平移变换和函数解析式之间的关系,平移后解析式有这样一个规律“左加右减,上加下减”.
    20、1
    【解析】
    分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.
    详解:∵BD=CD,AB=CD,
    ∴BD=BA,
    又∵AM⊥BD,DN⊥AB,
    ∴DN=AM=3,
    又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
    ∴∠P=∠PAM,
    ∴△APM是等腰直角三角形,
    ∴AP=AM=1,
    故答案为1.
    点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
    21、
    【解析】
    利用重合部分的角相等和等角的余角相等,逐步判定∠2=∠COB
    ,即可完成解答。
    【详解】
    解:如图
    ∵都是正方形
    ∴∠FOC=∠EOB=∠DOA=
    又∵∠2+∠EOC= ∠BOC+∠EOC=
    ∴∠2= ∠BOC
    ∴∠1+∠2+∠3=∠DOA=
    故答案为。
    本题主要考查了正方形的性质以及重合部分的角相等和等角的余角相等的知识,其中确定∠2= ∠BOC是解题的关键。
    22、
    【解析】
    过点B'作B'F⊥AD,延长FB'交BC与点G,可证四边形ABGF是矩形,AF=BG=4,∠BGF=90°,由勾股定理可求B'F=3,可得B'G=2,由勾股定理可求BE的长.
    【详解】
    解:如图,过点B'作B'F⊥AD,延长FB'交BC与点G,
    ∵四边形ABCD是矩形
    ∴AD=BC=8,∠DAB=∠ABC=90°
    ∵AB'=B'D,B'F⊥AD
    ∴AF=FD=4,
    ∵∠DAB=∠ABC=90°,B'F⊥AD
    ∴四边形ABGF是矩形
    ∴AF=BG=4,∠BGF=90°
    ∵将△ABE以AE为折痕翻折,
    ∴BE=B'E,AB=AB'=5
    在Rt△AB'F中,
    ∴B'G=2
    在Rt△B'EG中,B'E2=EG2+B'G2,
    ∴BE2=(4-BE)2+4
    ∴BE=
    故答案为:.
    本题考查了翻折变换,矩形的判定与性质,等腰三角形的性质,勾股定理,求B'G的长是本题的关键.
    23、2
    【解析】
    由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.
    【详解】
    ∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,
    ∴DF为三角形ABC的中位线,
    ∴DE∥BC,DF=BC,
    又∠ADF=90°,
    ∴∠C=∠ADF=90°,
    又BE⊥DE,DE⊥AC,
    ∴∠CDE=∠E=90°,
    ∴四边形BCDE为矩形,
    ∵BC=2,∴DF= BC=1,
    在Rt△ADF中,∠A=30°,DF=1,
    ∴tan30°= ,即AD= ,
    ∴CD=AD=,
    则矩形BCDE的面积S=CD⋅BC=2.
    故答案为2
    此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形
    二、解答题(本大题共3个小题,共30分)
    24、1
    【解析】
    根据平行四边形的周长求出BC+CD=20,再根据平行四边形的面积求出BC=CD,然后求出CD的值,再根据平行四边形的面积公式计算即可得解.
    【详解】
    ∵▱ABCD的周长=2(BC+CD)=40,
    ∴BC+CD=20①,
    ∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,
    ∴S▱ABCD=4BC=6CD,
    整理得,BC=CD②,
    联立①②解得,CD=8,
    ∴▱ABCD的面积=AF•CD=6CD=6×8=1.
    本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.
    25、(1)详见解析;(2);(3)
    【解析】
    (1)作△ABC的角平分线AE,作线段AE的垂直平分线交AB于D,交AC于F,连接DE、EF,四边形ADEF即为所求;
    (2)由题意,当∠A=60°,AD=4时,△ADF,△EFD,△EMD都是等边三角形,边长为4,由此即可解决问题;
    (3)利用三角形的中位线定理即可解决问题.
    【详解】
    (1)D,E,F的位置如图所示.
    (2)由题意,当∠A=60°,AD=4时,△ADF,△EFD,△EMD都是等边三角形,边长为4,
    ∴S四边形AFEM=3××42=12;
    (3)当AB=AC时,易知DE是△ABC的中位线,
    ∴DE=AC
    ∴=.
    本题考查菱形的判定和性质,复杂作图,等边三角形的性质,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    26、甲优先录取.
    【解析】
    根据加权平均数的计算公式分别计算出甲、乙两人的成绩,再进行比较即得结果.
    【详解】
    解:甲的考评成绩是:88×30%+91×60%+88×10%=92.2,
    乙的考评成绩是:91×30%+90×60%+90×10%=91.1.
    答:甲优先录取.
    本题考查了加权平均数的应用,属于基础题型,熟练掌握计算的方法是解题的关键.
    题号





    总分
    得分
    批阅人
    考评项目
    成绩/分


    理论知识(笔试)
    88
    95
    模拟上课
    95
    90
    答 辩
    88
    90
    相关试卷

    2024-2025学年湖南省长沙市雨花区中雅培粹学校九年级(上)开学数学试卷(含答案): 这是一份2024-2025学年湖南省长沙市雨花区中雅培粹学校九年级(上)开学数学试卷(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    [数学]2024~2025学年湖南省长沙市雨花区中雅培粹学校九年级(上)开学试卷(有答案): 这是一份[数学]2024~2025学年湖南省长沙市雨花区中雅培粹学校九年级(上)开学试卷(有答案),共9页。

    2023-2024学年湖南省长沙市中学雅培粹学校九上数学期末综合测试试题含答案: 这是一份2023-2024学年湖南省长沙市中学雅培粹学校九上数学期末综合测试试题含答案,共7页。试卷主要包含了一元二次方程的解是,方程的解是,桌面上放有6张卡片等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map