2025届湖南省长沙市开福区周南中学数学九年级第一学期开学教学质量检测试题【含答案】
展开
这是一份2025届湖南省长沙市开福区周南中学数学九年级第一学期开学教学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式中与 是同类二次根式的是( )
A.B.C.D.
2、(4分)对点Q(0,3)的说法正确的是( )
A.是第一象限的点B.在轴的正半轴
C.在轴的正半轴D.在轴上
3、(4分)下列二次根式中,最简二次根式的是( )
A.B.C.D.
4、(4分)据有关实验测定,当室温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒适,这个室温约(精确到1℃)( )
A.21℃B.22℃C.23℃D.24℃
5、(4分)若直线l与直线y=2x﹣3关于y轴对称,则直线l的解析式是( )
A.y=﹣2x+3B.y=﹣2x﹣3C.y=2x+3D.y=2x﹣3
6、(4分)下列各组数据中,不能作为直角三角形边长的是( )
A.B.C.D.
7、(4分)如图,点、、、分别是四边形边、、、的中点,则下列说法:
①若,则四边形为矩形;
②若,则四边形为菱形;
③若四边形是平行四边形,则与互相垂直平分;
④若四边形是正方形,则与互相垂直且相等.
其中正确的个数是( )
A.1B.2C.3D.4
8、(4分)如图,平行四边形ABCD中,对角线AC和BD相交于点O,若AC=12,BD=10,AB=7,则△DOC的周长为( )
A.29B.24C.23D.18
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直线y=k1x+b与直线y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于X的不等式 k1x+b>k2x+c的解集为_____.
10、(4分)如图,在菱形中,,,点E,F分别是边,的中点,是上的动点,那么的最小值是_______.
11、(4分)我国古代数学著作《九章算术》有一个问题:一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,1丈=10尺,那么折断处离地面的高度是__________尺.
12、(4分)12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是_____.
13、(4分)在实数范围内分解因式:5-x2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:.
15、(8分)如图,AD是△ABC的高,CE是△ABC的中线.
(1)若AD=12,BD=16,求DE;
(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.
16、(8分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.
17、(10分)某公司第一季度花费3000万元向海外购进A型芯片若干条,后来,受国际关系影响,第二季度A型芯片的单价涨了10元/条,该公司在第二季度花费同样的钱数购买A型芯片的数量是第一季度的80%,求在第二季度购买时A型芯片的单价。
18、(10分)如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东航行,乙船向南偏东航行,3小时后,甲船到达C岛,乙船到达B岛,若C、B两岛相距102海里,问乙船的航速是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线经过点,当时,的取值范围为__________.
20、(4分)把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为_____.
21、(4分)如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.
22、(4分)如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是___________度.(温馨提示:等腰梯形是一组对边平行,且同一底边上两底角相等的四边形)
23、(4分)分式与的最简公分母是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?
25、(10分)已知一次函数的图象经过点 和.
(1)求该函数图像与x轴的交点坐标;
(2)判断点是否在该函数图像上.
26、(12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:
(1)BC= cm;
(2)当t为多少时,四边形PQCD成为平行四边形?
(3)当t为多少时,四边形PQCD为等腰梯形?
(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据同类二次根式的定义一一判断选择即可.
【详解】
A.与不是同类二次根式,故不符合题意;
B.与不是同类二次根式,故不符合题意;
C.与是同类二次根式,符合题意;
D.与不是同类二次根式,故不符合题意;
综上答案选C.
本题考查的是同类二次根式的定义与二次根式的化简,能够化简选项中的二次根式是解题的关键.
2、B
【解析】
根据横坐标为0可知点Q在y轴上,纵坐标大于0,则点在正半轴.
【详解】
点Q(0,3)在y轴的正半轴,
故选B.
本题考查坐标系中的点坐标特征,熟记坐标轴上的点横纵坐标的特征是解题的关键.
3、A
【解析】
根据最简二次根式的条件进行分析.
【详解】
A.,是最简二次根式;
B.,不是最简二次根式;
C.,不是最简二次根式;
D.,不是最简二次根式;
故选:A
满足下列条件的二次根式,叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式
4、C
【解析】
根据黄金比的值可知,人体感到最舒适的温度应为37℃的0.1倍.
【详解】
解:根据黄金比的值得:37×0.1≈23℃.
故选C.
本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.1.
5、B
【解析】
利用关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变解答即可。
【详解】
解:与直线y=2x﹣1关于y轴对称的点的坐标为横坐标互为相反数,纵坐标不变,则
y=2(﹣x)﹣1,即y=﹣2x﹣1.
所以直线l的解析式为:y=﹣2x﹣1.
故选:B.
本题主要考查了一次函数的图象与几何变换,利用轴对称变换的特点解答是解题关键.
6、C
【解析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.因此,只需要判断两个较小的数的平方和是否等于最大数的平方即可判断.
【详解】
解:A、92+122=152,根据勾股定理的逆定理可知是直角三角形,故选项错误;
B、52+122=132,根据勾股定理的逆定理可知是直角三角形,故选项错误;
C、32+52≠72,根据勾股定理的逆定理可知不是直角三角形,故选项正确;
D、12+=22,根据勾股定理的逆定理可知是直角三角形,故选项错误.
故选C.
本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:计算两个较小的数的平方和是否等于最大数的平方即可判断.
7、A
【解析】
根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形、菱形、正方形的判定定理判断即可.
【详解】
解:∵E、F分别是边AB、BC的中点,
∴EF∥AC,EF=AC,
同理可知,HG∥AC,HG=AC,
∴EF∥HG,EF=HG,
∴四边形EFGH是平行四边形,
若AC=BD,则四边形EFGH是菱形,故①说法错误;
若AC⊥BD,则四边形EFGH是矩形,故②说法错误;
若四边形是平行四边形,AC与BD不一定互相垂直平分,故③说法错误;
若四边形是正方形,AC与BD互相垂直且相等,故④说法正确;
故选:A.
本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,掌握三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理是解题的关键.
8、D
【解析】
根据平行四边形的对角线互相平分可求出DO与CO的长,然后求出△DOC的周长即可得出答案.
【详解】
在平行四边形ABCD中,
∵CD=AB=7,,,
∴△DOC的周长为:DO+CO+CD=5+6+7=18.
故选D.
本题考查了平行四边形的性质.熟练掌握平行四边形的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>1
【解析】
根据图形,找出直线 k1x+b在直线k2x+c上方部分的x的取值范围即可.
【详解】
解:由图形可知,当x>1时,k1x+b>k2x+c,
所以,不等式的解集是x>1.
故答案为x>1.
本题考查了两直线相交的问题,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.
10、5
【解析】
设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,根据菱形的性质推出N是AD中点,P与O重合,推出PE+PF=NF=AB,根据勾股定理求出AB的长即可.
【详解】
设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,
∴PN=PE,
∵四边形ABCD是菱形,
∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,
∵E为AB的中点,
∴N在AD上,且N为AD的中点,
∵AD∥CB,
∴∠ANP=∠CFP,∠NAP=∠FCP,
∵AD=BC,N为AD中点,F为BC中点,
在△ANP和△CFP中
∵ ,
∴△ANP≌△CFP(ASA),
∴AP=CP,
即P为AC中点,
∵O为AC中点,
∴P、O重合,
即NF过O点,
∵AN∥BF,AN=BF,
∴四边形ANFB是平行四边形,
∴NF=AB,
∵菱形ABCD,
∴AC⊥BD,OA=AC=4,BO=BD=3,
由勾股定理得:AB= =5,
故答案为:5.
此题考查轴对称-最短路线问题,菱形的性质,解题关键在于作辅助线
11、4.1
【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面的高度是x尺,则斜边为(10-x)尺.利用勾股定理解题即可.
【详解】
解:1丈=10尺,
设折断处离地面的高度为x尺,则斜边为(10-x)尺,
根据勾股定理得:x2+32=(10-x)2
解得:x=4.1.
答:折断处离地面的高度为4.1尺.
故答案为:4.1.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
12、中位数
【解析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.
【详解】
解:由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少即可,故答案为:中位数.
本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
13、( +x)( -x)
【解析】
理解实数范围内是要运算到无理数为止,即可解题.
【详解】
解:5-x2=( +x)( -x)
本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
根据分式的基本运算法则,先算括号内,再算除法.
【详解】
试题分析:
解:
考点:实数的运算;本题属于基础应用题,只需学生熟练掌握实数的基本运算规则,即可完成.
15、(1)DE=10;(2)∠BCE=19°.
【解析】
(1)根据勾股定理和直角三角形斜边上的中线等于斜边的一半即可得到结论;
(2)由DE=DC得到∠DEC=∠DCE,由DE=BE得到∠B=∠EDB,由此根据外角的性质来求∠BCE的度数.
【详解】
(1)∵AD⊥BC,
∴∠ADB=90°,
∴AB==20,
∵CE是中线,
∴DE是斜边AB上的中线,
∴DE=AB=10;
(2)∵DF⊥CF,F是CF的中点,
∴DE=DC,
∴∠DEC=∠DCE,
∴∠EDB=∠DEC+∠DCE=2∠BCE,
∵DE=BE,
∴∠B=∠EDB,
∴∠B=2∠BCE,
∴∠AEC=3∠BCE=57°,则∠BCE=19°.
本题考查了勾股定理,也考查了直角三角形斜边上的中线性质,熟练掌握勾股定理是解题的关键.
16、见解析,
【解析】
要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
【详解】
证明:由折叠得:BC=EC,∠B=∠AEC,
∵矩形ABCD,
∴BC=AD,∠B=∠ADC=90°,
∴EC=DA,∠AEC=∠ADC=90°,
又∵∠AFD=∠CFE,
∴△ADF≌△CEF (AAS)
∴∠DAE=∠ECD.
本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.
17、在第二季度购买时A型芯片的单价为50元.
【解析】
依据题目找到数量关系:第一季度购买时A型芯片的数量第二季度购买时A型芯片的数量,列出方程,解方程即可。
【详解】
解:设在第二季度购买时A型芯片的单价为x元,依题意可得:
解得:
经检验可知是原分式方程的解。
答:在第二季度购买时A型芯片的单价为50元.
本题考查了分式方程的应用,找到数量关系列出方程是解题的关键.
18、30(海里/时)
【解析】
通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形,可以通过勾股定理计算出AB的长度,然后求乙船的速度.
【详解】
通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形
又AC为甲船航行的路程,则AC=16×3=48
由可知:
AB=
所以乙船的航速为90÷3=30(海里/时)
故答案为30(海里/时)
本题考察了方位角的判断,构造出直角三角形,运用勾股定理解题,需要清楚的是勾股定理是指,直角三角形中两个直角边的平方和等于斜边的平方.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据题意结合图象首先可得的图象过点A,因此便可得的解集.
【详解】
解:∵正比例函数也经过点,
∴的解集为,
故答案为:.
本题主要考查函数的不等式的解,关键在于根据图象来判断,这是最简便的解题方法.
20、y=﹣x+1
【解析】
根据“上加下减”的平移规律可直接求得答案.
【详解】
解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.
故答案为:y=﹣x+1.
本题考查一次函数图象与几何变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.
21、(22018,0)
【解析】
根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.
【详解】
根据题意得:
A1和B1的横坐标为1,
把x=1代入y=x得:y=1
B1的纵坐标为1,
即A1B1=1,
∵△B1A1A2为等腰直角三角形,
∴A1A2=1,
A2和B2的横坐标为1+1=2,
同理:A3和B3的横坐标为2+2=4=22,
A4和B4的横坐标为4+4=8=23,
…
依此类推,
A2019的横坐标为22018,纵坐标为0,
即点A2019的坐标为(22018,0),
故答案为:(22018,0).
此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.
22、1
【解析】
仔细观察可发现等腰梯形的三个钝角的和是360°,从而可求得其钝角的度数.
【详解】
解:根据条件可以知道等腰梯形的三个钝角的和是360°,因而这个图案中等腰梯形的底角是360°÷3=1°,
故答案为:1.
本题考查了平面镶嵌(密铺)和等腰梯形的性质,正确观察图形,得到梯形角的关系是解题的关键.
23、15bc1
【解析】
试题分析:分式与的最简公分母是15bc1.
故答案为15bc1.
点睛:本题考查了最简公分母的找法,若分母是单项式,一般找最简公分母分三步进行:①找系数,系数取所有分母系数的最小公倍数;②取字母,字母取分母中出现的所有字母;③取指数,指数取同一字母指数的最大值.
二、解答题(本大题共3个小题,共30分)
24、14cm1
【解析】
连接AC,利用勾股定理求出AC的长,在△ABC中,判断它的形状,并求出它的面积,最后求出四边形ABCD的面积.
【详解】
解:连接AC,
∵AD=4cm,CD=3cm,∠ADC=90°,
∴AC===5(cm)
∴S△ACD=CD•AD=6(cm1).
在△ABC中,∵51+111=131即AC1+BC1=AB1,
∴△ABC为直角三角形,即∠ACB=90°,
∴S△ABC=AC•BC=30(cm1).
∴S四边形ABCD=S△ABC-S△ACD
=30-6=14(cm1).
答:四边形ABCD的面积为14cm1.
本题考查了勾股定理、勾股定理的逆定理及三角形的面积公式.掌握勾股定理及其逆定理,连接AC,说明△ABC是直角三角形是解决本题的关键.
25、(1)(2,0);(2)点不在该函数图像上.
【解析】
(1)设一次函数解析式为y=kx+b,把已知两点坐标代入求出k与b的值,即可确定出解析式,然后令y=0,解出x,即可求得交点;
(2)将x=-3代入解析式计算y的值,与6比较即可.
【详解】
解:(1)设一次函数解析式为y=kx+b,
把 和代入解析式得:,解得:,
∴一次函数解析式为,
令y=0,则,解得:,
∴该函数图像与x轴的交点坐标为(2,0);
(2)将x=-3代入解析式得:,
∵,
∴点不在该函数图像上.
此题考查了待定系数法求一次函数解析式,以及一次函数图像上点的坐标特征,熟练掌握待定系数法是解本题的关键.
26、(1)18cm(2)当t=秒时四边形PQCD为平行四边形(3)当t=时,四边形PQCD为等腰梯形(4)存在t,t的值为秒或4秒或秒
【解析】试题分析:(1)作DE⊥BC于E,则四边形ABED为矩形.在直角△CDE中,已知DC、DE的长,根据勾股定理可以计算EC的长度,根据BC=BE+EC即可求出BC的长度;
(2)由于PD∥QC,所以当PD=QC时,四边形PQCD为平行四边形,根据PD=QC列出关于t的方程,解方程即可;
(3)首先过D作DE⊥BC于E,可求得EC的长,又由当PQ=CD时,四边形PQCD为等腰梯形,可求得当QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12时,四边形PQCD为等腰梯形,解此方程即可求得答案;
(4)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.
试题解析:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.
(1)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,
DE=AB=8cm,AD=BE=12cm,
在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,
∴EC==6cm,
∴BC=BE+EC=18cm.
(2)∵AD∥BC,即PD∥CQ,
∴当PD=CQ时,四边形PQCD为平行四边形,
即12-2t=3t,
解得t=秒,
故当t=秒时四边形PQCD为平行四边形;
(3)如图,过D点作DE⊥BC于E,则四边形ABED为矩形,DE=AB=8cm,AD=BE=12cm,
当PQ=CD时,四边形PQCD为等腰梯形.
过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是矩形,EF=PD=12-2t,PF=DE.
在Rt△PQF和Rt△CDE中,
,
∴Rt△PQF≌Rt△CDE(HL),
∴QF=CE,
∴QC-PD=QC-EF=QF+EC=2CE,
即3t-(12-2t)=12,
解得:t=,
即当t=时,四边形PQCD为等腰梯形;
(4)△DQC是等腰三角形时,分三种情况讨论:
①当QC=DC时,即3t=10,
∴t=;
②当DQ=DC时,
∴t=4;
③当QD=QC时,3t×
∴t=.
故存在t,使得△DQC是等腰三角形,此时t的值为秒或4秒或秒.
考点:四边形综合题.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年湖南省长沙市周南教育集团九年级数学第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖南省长沙市开福区周南实验中学九上数学开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年湖南省长沙市开福区周南实验中学数学九年级第一学期期末综合测试试题含答案,共8页。试卷主要包含了若2y-7x=0,则x∶y等于,若反比例函数的图象上有两点P1等内容,欢迎下载使用。