|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届广东省中学山一中学九上数学开学教学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    2025届广东省中学山一中学九上数学开学教学质量检测模拟试题【含答案】01
    2025届广东省中学山一中学九上数学开学教学质量检测模拟试题【含答案】02
    2025届广东省中学山一中学九上数学开学教学质量检测模拟试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届广东省中学山一中学九上数学开学教学质量检测模拟试题【含答案】

    展开
    这是一份2025届广东省中学山一中学九上数学开学教学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)式子在实数范围内有意义,则x的取值范围是( )
    A.x<1B.x≥1C.x≤﹣1D.x<﹣1
    2、(4分)下列二次根式中,与是同类二次根式的是( )
    A.B.C.D.
    3、(4分)在“爱我汾阳”演讲赛中,小明和其他6名选手参加决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名同学成绩的( )
    A.平均数B.众数C.中位数D.方差
    4、(4分)如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( )
    A.6B.11C.12D.18
    5、(4分)在▱ABCD中,∠A+∠C=130°,则∠A的度数是( )
    A.50°B.65°C.70°D.80°
    6、(4分)若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为( )
    A.0B.1C.±1D.﹣1
    7、(4分)直线y=2x﹣6与x轴的交点坐标是( )
    A.(0,3)B.(3,0)C.(0,﹣6)D.(﹣3,0)
    8、(4分)△ABC与△DEF的相似比为,则△ABC与△DEF的面积比为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:
    (Ⅰ)该地区出租车的起步价是_____元;
    (Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式_____.
    10、(4分)如图,在▱ABCD中,∠A=72°,将□ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=_____°.
    11、(4分)如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有_____.(只填写序号)
    12、(4分)多边形的每个外角都等于45°,则这个多边形是________边形.
    13、(4分)一个纳米粒子的直径是0.000 000 035米,用科学记数法表示为______米.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某学校开展课外体育活动,决定开设A:篮球、B:羽毛球、C:跑步、D:乒乓球这四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.
    (1)样本中最喜欢A项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;
    (2)请把条形统计图补充完整;
    (3)若该校有学生2500人,请根据样本估计全校最喜欢跑步的学生人数约是多少?
    15、(8分)如图1,在平面直角坐标系中,正方形ABCD顶点C(3,0),顶点D(0,4),过点A作AF⊥y轴于F点,过点B作x轴的垂线交过A点的反比例函数y=(k>0)的图象于E点,交x轴于G点.
    (1)求证:△CDO≌△DAF.
    (2)求反比例函数解析式及点E的坐标;
    (3)如图2,过点C作直线l∥AE,在直线l上是否存在一点P使△PAC是等腰三角形?若存在,求P点坐标,不存在说明理由.
    16、(8分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且 BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.
    (1)求证:△AOE≌△COF;
    (2)若AC平分∠HAG,求证:四边形AGCH是菱形.
    17、(10分)2019年中国北京世界园艺博览会于4月28日晚在北京·延庆隆重开幕,本届世园会主题为“绿色生活、美丽家园”.自开园以来,世园会迎来了世界各国游客进园参观.据统计,仅五一小长假前来世园会打卡的游客就总计约32.7万人次.其中中国馆也是非常受欢迎的场馆.据调查,中国馆5月1日游览人数约为4万人,5月3日游览人数约为9万人,若5月1日到5月3日游客人数的日增长率相同,求中国馆这两天游客人数的日平均增长率是多少?
    18、(10分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?
    (1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.
    方法2:如图②,取四边形四边的中点,,,,连接,,,,
    (2)求证:四边形是平行四边形;
    (3)请直接写出S四边形ABCD与之间的关系:_____________.
    方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;
    (4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.
    (5)求证:四边形是平行四边形.
    (注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)
    (6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD= .
    (7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在Rt△ABC中,∠A=30°,斜边AB=12,CD⊥AB于D,则AD=_____________.
    20、(4分)最简二次根式与是同类二次根式,则=______.
    21、(4分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的_____(从“众数、方差、平均数、中位数”中填答案)
    22、(4分)观察分析下列数据:0,,,-3,,,,…,根据数据排列的规律得到第10个数据应是__________.
    23、(4分)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)问题情境:在中,,点是的中点,以为角的顶点作.
    感知易证:(1)如图1,当射线经过点时,交边于点.将从图1中的位置开始,绕点按逆时针方向旋转,使射线、始终分别交边,于点、,如图2所示,易证,则有.
    操作探究:(2)如图2,与是否相似,若相似,请证明;若不相似,请说明理由;
    拓展应用:(3)若,直接写出当(2)中的旋转角为多少度时,与相似.
    25、(10分)经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.
    (1)当每吨售价是240元时,此时的月销售量是多少吨.
    (2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?
    26、(12分)在△ABC中,
    (1)作线段AC的垂直平分线1,交AC于点O:(保留作图痕迹,请标明字母)
    (2)连接BO并延长至D,使得,连接DA、DC,证明四边形ABCD是矩形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据二次根式有意义的条件判断即可.
    【详解】
    解:由题意得,x﹣1≥0,
    解得,x≥1,
    故选:B.
    本题主要考查二次根式有意义的条件,熟悉掌握是关键.
    2、C
    【解析】
    根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.
    【详解】
    A.|a|与不是同类二次根式;
    B.与不是同类二次根式;
    C.2与是同类二次根式;
    D.与不是同类二次根式.
    故选C.
    本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
    3、C
    【解析】
    7人成绩的中位数是第4名的成绩,参赛选手想要知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有7个人,且他们的分数互不相同,第4名的成绩是中位数,要判断是否进入前4名,故应知道中位数是多少,
    故选:C.
    考查了中位数的定义,中位数的实际应用,熟记中位数的定义是解题关键.
    4、C
    【解析】
    试题分析:这个正多边形的边数:360°÷30°=12,故选C.
    考点:多边形内角与外角.
    5、B
    【解析】
    根据平行四边形的性质可知∠A=∠C,再结合题中∠A+∠C=130°即可求出∠A的度数.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴.
    又∵∠A+∠C=130°,
    ∴∠A =65°,
    故选:B.
    本题主要考查平行四边形的性质,掌握平行四边形的性质是解题的关键.
    6、B
    【解析】
    试题分析:先根据正比例函数的定义列出关于k的方程组,求出k的值即可.
    解:∵函数y=(k+1)x+k2﹣1是正比例函数,
    ∴,
    解得k=1.
    故选B.
    考点:正比例函数的定义.
    7、B
    【解析】
    把y=0代入y=2x﹣6即可求得直线 与 轴的交点坐标.
    【详解】
    当y=0时,2x-6=0,解得:x=3,
    所以,与x轴的交点坐标是(3,0),选B。
    此题考查一次函数图象上点的坐标特征,解题关键在于把y=0代入解析式
    8、D
    【解析】
    直接根据相似三角形的性质即可得出结论.
    【详解】
    解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,
    ∴△ABC与△DEF的面积比=()2=1:16,
    故答案为:D
    本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、8 y=1x+1.
    【解析】
    (Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,
    (Ⅱ)利用待定系数法求出一次函数解析式即可.
    【详解】
    (Ⅰ)该城市出租车3千米内收费8元,
    即该地区出租车的起步价是8元;
    (Ⅱ)依题意设y与x的函数关系为y=kx+b,
    ∵x=3时,y=8,x=8时,y=18;
    ∴,
    解得;
    所以所求函数关系式为:y=1x+1(x>3).
    故答案为:8;y=1x+1.
    此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.
    10、1
    【解析】
    由旋转的性质可知:▱ABCD全等于▱A1BC1D1,得出BC=BC1,由等腰三角形的性质得出∠BCC1=∠C1,由旋转角∠ABA1=∠CBC1,根据等腰三角形的性质计算即可.
    【详解】
    ∵▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,
    ∴BC=BC1,
    ∴∠BCC1=∠C1,
    ∵∠A=72°,
    ∴∠DCB=∠C1=72°,
    ∴∠BCC1=∠C1,
    ∴∠CBC1=180°﹣2×72°=1°,
    ∴∠ABA1=1°,
    故答案为1.
    本题考查了平行四边形的性质、旋转的性质、等腰三角形的判定和性质以及三角形的内角和定理,解题的关键是证明三角形CBC1是等腰三角形.
    11、①②③
    【解析】
    根据折叠性质可得OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,即可得出∠ACB=30°,进而可得∠OCF=∠DCF=∠BAE=∠OAE=30°,可证明
    AE//CF,AE=CE,根据矩形性质可得CE//AF,即可得四边形AECF是平行四边形,进而可得四边形AECF为菱形,由∠BAE=30°,可得∠AEB=60°,即可得∠AEC=120°,根据含30°角的直角三角形的性质可求出BE的长,即可得OE的长,根据菱形的面积公式即可求出四边形AECF的面积,根据含30°角的直角三角形的性质即可求出AB:BC的值,综上即可得答案.
    【详解】
    ∵矩形ABCD分别沿AE、CF折叠,B、D两点恰好都落在对角线的交点O上,
    ∴OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,
    ∴∠ACB=∠CAD=30°,∠BAC=∠ACD=60°,
    ∵∠OCF=∠DCF,∠BAE=∠OAE,
    ∴∠OCF=∠DCF=∠BAE=∠OAE=30°,
    ∴AE//CF,AE=CE,
    ∴四边形AECF是平行四边形,
    ∵AE=CE,
    ∴四边形AECF是菱形,故①正确,
    ∵∠BAE=30°,∠B=90°,
    ∴∠AEB=60°,
    ∴∠AEC=120°,故②正确,
    设BE=x,
    ∵∠BAE=30°,
    ∴AE=2x,
    ∴x2+22=(2x)2,
    解得:x=,
    ∴OE=BE=,
    ∴S菱形AECF=EFAC=××4=,故③正确,
    ∵∠ACB=30°,
    ∴AC=2AB,
    ∴BC==AB,
    ∴AB:BC=1:,故④错误,
    综上所述:正确的结论有①②③,
    故答案为:①②③
    本题考查矩形的性质、菱形的判定与性质及含30°角的直角三角形的性质,熟练掌握相关性质及判定方法是解题关键.
    12、八
    【解析】
    根据多边形的外角和等于360°,用360°除以多边形的每个外角的度数,即可得出这个多边形的边数.
    【详解】
    解:∵360°÷45°=8,
    ∴这个多边形是八边形.
    故答案为:八.
    此题主要考查了多边形的外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°.
    13、3.5×10-1.
    【解析】
    绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.000 000 035=3.5×10-1.
    故答案为:3.5×10-1.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定.
    三、解答题(本大题共5个小题,共48分)
    14、(1)40%,144;(2)详见解析;(3)250人
    【解析】
    (1)根据扇形统计图中的数据可以求得最喜欢A项目的人数所占的百分比,并求出其所在扇形统计图中对应的圆心角度数;
    (2)根据统计图中的数据可以求得选择A的人数,从而可以将条形统计图补充完整;
    (3)根据统计图中的数据可以求得全校最喜欢跑步的学生人数约是多少.
    【详解】
    解:(1)样本中最喜欢A项目的人数所占的百分比为:1﹣30%﹣10%﹣20%=40%,其所在扇形统计图中对应的圆心角度数是:360°×40%=144°,
    故答案为40%,144;
    (2)选择A的人有:45÷30%×40%=60(人),
    补全的条形统计图如右图所示;
    (3)2500×10%=250(人),
    答:全校最喜欢跑步的学生人数约是250人.
    本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    15、(1)见解析;(2)为y=,点E的坐标为(7,1);(3)在直线l上存在一点P使△PAC是等腰三角形,点P的坐标为(﹣3,6),(﹣2,5),(8,﹣5),(﹣,).
    【解析】
    (1)利用同角的余角相等可得出∠CDO=∠DAF,结合∠DOC=∠AFD=90°及DC=AD,可证出△CDO≌△DAF;
    (2)利用全等三角形的性质可求出AF,FD的长,进而可得出点A的坐标,由点A的坐标,利用反比例函数图象上点的坐标特征可求出反比例函数解析式,同(1)可证出△CDO≌△BCG,利用全等三角形的性质及反比例函数图象上点的坐标特征可求出点E的坐标;
    (3)由点A,E的坐标,利用待定系数法可求出直线AE的解析式,结合直线l∥AE及点C的坐标可求出直线l的解析式,设点P的坐标为(m,﹣m+3),结合点A,C的坐标可得出AC2,AP2,CP2的值,分AC=AP,CA=CP及PA=PC三种情况可得出关于m的方程,解之即可得出点P的坐标.
    【详解】
    (1)证明:∵四边形ABCD为正方形,
    ∴AD=DC,∠ADC=90°,
    ∴∠ADF+∠CDO=90°.
    ∵∠ADF+∠DAF=90°,
    ∴∠CDO=∠DAF.
    在△CDO和△DAF中,

    ∴△CDO和△DAF(AAS).
    (2)解:∵点C的坐标为(3,0),点D的坐标为(0,1),
    ∴OC=3,OD=1.
    ∵△CDO和△DAF,
    ∴FA=OD=1,FD=OC=3,
    ∴OF=OD+FD=7,
    ∴点A的坐标为(1,7).
    ∵反比例函数y=(k>0)过点A,
    ∴k=1×7=28,
    ∴反比例函数解析式为y=.
    同(1)可证出:△CDO≌△BCG,
    ∴GB=OC=3,GC=OD=1,
    ∴OG=OC+GC=7,
    ∴点G的坐标为(7,0).
    当x=7时,y==1,
    ∴点E的坐标为(7,1).
    (3)解:设直线AE的解析式为y=ax+b(a≠0),
    将A(1,7),E(7,1)代入y=ax+b,得:,
    解得:,
    ∴直线AE的解析式为y=﹣x+2.
    ∵直线l∥AE,且直线l过点C(3,0),
    ∴直线l的解析式为y=﹣x+3.
    设点P的坐标为(m,﹣m+3),
    ∵点A的坐标为(1,7),点C的坐标为(3,0),
    ∴AP2=(m﹣1)2+(﹣m+3﹣7)2=2m2+32,AC2=(3﹣1)2+(0﹣7)2=50,CP2=(m﹣3)2+(﹣m+3)2=2m2﹣12m+4.
    分三种情况考虑:
    ①当AC=AP时,50=2m2+32,
    解得:m1=3(舍去),m2=﹣3,
    ∴点P的坐标为(﹣3,6);
    ②当CA=CP时,50=2m2﹣12m+4,
    解得:m3=﹣2,m1=8,
    ∴点P的坐标为(﹣2,5)或(8,﹣5);
    ③当PA=PC时,2m2+32=2m2﹣12m+4,
    解得:m=﹣,
    ∴点P的坐标为(﹣,).
    综上所述:在直线l上存在一点P使△PAC是等腰三角形,点P的坐标为(﹣3,6),(﹣2,5),(8,﹣5),(﹣,).
    本题考查了正方形的性质,全等三角形的判定与性质、反比例函数图象上点的坐标特征、待定系数法求反比例函数及一次函数解析式、平行线的性质以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的判定定理AAS证出△CDO≌△DAF;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分AC=AP,CA=CP及PA=PC三种情况,找出关于m的方程.
    16、 (1)见解析;(2) 见解析.
    【解析】
    (1)先由四边形ABCD是平行四边形,得出OA=OC,OB=OD,则OE=OF,又∵∠AOE=∠COF,利用SAS即可证明△AOE≌△COF;
    (2)先证明四边形AGCH是平行四边形,再证明CG=AG,即可证明四边形AGCH是菱形.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD.
    ∵BE=DF,∴OE=OF.
    在△AOE与△COF中,
    ∴△AOE≌△COF(SAS).
    (2)由(1)得△AOE≌△COF,
    ∴∠OAE=∠OCF,∴AE∥CF.
    又∵AH∥CG,∴四边形AGCH是平行四边形.
    ∵AC平分∠HAG,∴∠HAC=∠GAC.
    ∵AH∥CG,∴∠HAC=∠GCA,
    ∴∠GAC=∠GCA,∴CG=AG,
    ∴□AGCH是菱形.
    本题考查全等三角形的判定与性质,菱形的判定,难度适中,利用SAS证明△AOE≌△COF是解题关键.
    17、50%.
    【解析】
    设中国馆这两天游客人数的日平均增长率为x,根据中国馆5月1日游览人数约为4万人,5月3日游览人数约为9万人,若5月1日到5月3日游客人数的日增长率相同,列出方程即可.
    【详解】
    解:设中国馆这两天游客人数的日平均增长率为x,由题意得:

    解得,(舍去)
    答:中国馆这两天游客人数的日平均增长率为50%.
    此题考查一元二次方程的应用,解题关键在于列出方程.
    18、(1)S四边形ABCD;(2)见详解;(1)S四边形ABCD ;(4)AEO,OEB;(5)见详解;(6);(7)
    【解析】
    (1)先证四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,可得S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
    即可得出结论;
    (2)证明,和,,即可得出结论;
    (1)由,可得S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,即可得出结论;
    (4)有旋转的定义即可得出结论;
    (5)先证,得到,再证,即可得出结论;
    (6)应用方法1,过点H作HM⊥EF与点M,再计算即可得出答案;
    (7)应用方法1,过点O作OM⊥IK与点M, 再计算即可得出答案.
    【详解】
    解:方法一:如图,
    ∵EF∥AC∥HD,EH∥DB∥FG,
    ∴四边形AEBO, 四边形BFCO, 四边形CGDO, 四边形DHAO都是平行四边形,
    ∴S△ABO=S四边形AEBO, S△BCO=S四边形BFCO, S△CDO=S四边形CGDO, SADO=S四边形DHAO,
    ∴.
    故答案为.
    方法二:如图,连接.
    (1),分别为,中点
    ..
    ,分别为,中点


    四边形为平行四边形
    (2),分别为,中点
    ..
    ∴S四边形MNHE=S△ABD, S四边形MNGF=S△CBD,

    故答案为.
    方法1.(1)有旋转可知;.
    故答案为∠AEO;∠OEB.
    (2)证明:有旋转知.

    旋转.
    四边形为平行四边形
    应用1:如图,应用方法1,过点H作HM⊥EF与点M,
    ∵,
    ∴∠AEM=60°, ∠EHM=10°,
    ∵,,
    ∴EM=1,EH=6,EF=8,
    ∴HM==,
    ∴=EF·HM=24
    ∴=,
    故答案为.
    应用2:如图,应用方法1,过点O作OM⊥IK与点M,

    ∵,
    ∴∠MIO=60°, ∠IOM=10°,
    ∵,,
    ∴IM=1,OI=6,IK=8,
    ∴OM==,
    ∴=KI·OM=24
    ∴S四边形ABCD=,
    故答案为.
    此题主要考查了平行四边形的判定与性质,旋转,三角形的中位线,三角形和平行四边形的面积,选择合适的方法来求面积是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据30°角所对的直角边是斜边的一半,可得BC=6,然后利用勾股定理求出AC,再次利用30°所对的直角边的性质得到CD=AC,最后用勾股定理求出AD.
    【详解】
    ∵在Rt△ABC中,∠A=30°,斜边AB=12,
    ∴BC=AB=6
    ∴AC=
    ∵在Rt△ACD中,∠A=30°
    ∴CD=AC=
    ∴AD=
    故答案为:1.
    本题考查含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.
    20、4
    【解析】
    由于与是最简二次根式,故只需根式中的代数式相等即可确定的值.
    【详解】
    由最简二次根式与是同类二次根式,可得
    3a-1=11
    解得
    a=4
    故答案为:4.
    本题主要考察的是同类二次根式的定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.
    21、中位数
    【解析】
    9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
    故答案为:中位数.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    22、1
    【解析】
    通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.
    【详解】
    解:由题意知道:题目中的数据可以整理为:,,…,
    ∴第13个答案为:.
    故答案为:1.
    此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
    23、1
    【解析】
    通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.
    【详解】
    如图,根据题意,AD=AC=6,,,

    ,即,


    这个风车的外围周长是,
    故答案为1.
    本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)CD;(2)△BDF∽△DEF,理由见详解;(3)10°或40°.
    【解析】
    (1)如图2,根据∠EDF=∠B及三角形外角性质可得∠BFD=∠CDE,再根据∠B=∠C即可得到△BFD∽△CDE解决问题.
    (2)如图2,由(2)得△BFD∽△CDE,则有,由D是BC的中点可得.再根据∠B=∠EDF即可得到△BDF∽△DEF.
    (3)由∠B=∠C=50°可得∠BAC=80°,AB=AC,再由BD=CD可得AD⊥BC.若△DEF与△ABC相似,由△BDF∽△DEF可得△BDF与△ABC相似,从而得到∠BDF=∠BAC=80°,或∠BDF=∠C=50°,即可解决问题.
    【详解】
    解:(1)如图2,

    ∵AB=AC
    ∴∠B=∠C,
    ∵∠FDC是△BFD的一个外角,
    ∴∠FDC=∠B+∠BFD.
    ∵∠FDC=∠FDE+∠EDC,∠EDF=∠B,
    ∴∠BFD=∠CDE.
    ∵∠B=∠C,
    ∴△BFD∽△CDE;
    ∴.
    (2)如图2,结论:△BDF∽△DEF.

    理由:由(1)得.
    ∵D是BC的中点,
    ∴BD=CD,
    ∴,
    又∵∠B=∠EDF,
    ∴△BDF∽△DEF.
    (3)连接AD,如图3,

    ∵∠B=∠C=50°,
    ∴∠BAC=80°,AB=AC.
    ∵BD=CD,
    ∴AD⊥BC.
    若△DEF与△ABC相似,
    ∵△BDF∽△DEF,
    ∴△BDF与△ABC相似,
    ∴∠BDF=∠BAC=80°,或∠BDF=∠C=50°,
    ∴∠ADF=90°﹣80°=10°,或∠ADF=90°﹣50°=40°,
    ∴当(2)中的旋转角为10°或40°时,△DEF与△ABC相似.
    本题属于相似形综合题,主要考查了相似三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质、三角形内角和定理等知识,解题的关键是正确寻找相似三角形的判定条件,属于中考常考题型.
    25、(1)60;(2)将售价定为200元时销量最大.
    【解析】
    (1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.
    (2)设当售价定为每吨x元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元做为等量关系可列出方程求解.
    【详解】
    (1)45+×7.5=60;
    (2)设售价每吨为x元,
    根据题意列方程为:(x - 100)(45+×7.5)=9000,
    化简得x2 - 420x + 44000=0,
    解得x1=200,x2=220(舍去),
    因此,将售价定为200元时销量最大.
    本题考查理解题意能力,关键是找出降价10元,却多销售7.5吨的关系,从而列方程求解.
    26、 (1)详见解析;(2)详见解析
    【解析】
    (1)利用基本作图作AC的垂直平分线得到AC的中点O;
    (2)利用直角三角形斜边上的中线得到,然后根据对角线互相平分且相等的四边形为矩形可证明四边形ABCD是矩形.
    【详解】
    (1)解:如图,点O为所作:
    (2)证明:∵线段AC的垂直平分线,




    ∴四边形ABCD为矩形.
    本题考查了作图—基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了矩形的判定.
    题号





    总分
    得分
    相关试卷

    2025届广东省广州市第七中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2025届广东省广州市第七中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省靖江市靖城中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024年江苏省靖江市靖城中学九上数学开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年福建泉州安溪恒兴中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024年福建泉州安溪恒兴中学九上数学开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map