2025届甘肃省临泽县第二中学数学九年级第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列关于x的方程是一元二次方程的是( )
A.B.C.D.
2、(4分)关于,下列说法错误的是( )
A.它是无理数
B.它是方程x2+x-1=0的一个根
C.0.5<<1
D.不存在实数,使x2=
3、(4分)下列命题错误的是( )
A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分
C.矩形的对角线相等D.对角线相等的四边形是矩形
4、(4分)当x<a<0时,与ax的大小关系是( ).
A.>axB.≥axC.<axD.≤ax
5、(4分)如果关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,且关于x的分式方程有整数解,那么整数a值不可能是( )
A.0B.1C.3D.4
6、(4分)下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是,用式子表示是.其中错误的个数有( )
A.0个B.1个C.2个D.3个
7、(4分)一个正多边形每个外角都是30°,则这个多边形边数为( )
A.10B.11C.12D.13
8、(4分)将正方形和按如图所示方式放置,点和点在直线上点,在轴上,若平移直线使之经过点,则直线向右平移的距离为( ).
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)
10、(4分)如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,
,则线段EF的长为______.
11、(4分)一元二次方程有实数根,则的取值范围为____.
12、(4分)分解因式:2a3﹣8a=________.
13、(4分)在平面直角坐标系中,点P(–2,–3)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则①OA的长为 ;②点B的坐标为 (直接写结果);
(2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt△ACB如图放置,直角顶点
C(-1,0),点A(0,4),试求直线AB的函数表达式;
(3)拓展研究:如图3,在平面直角坐标系中,点B(4;3),过点B作BAy轴,垂足为点A;作BCx轴,垂足为点C,P是线段BC上的一个动点,点Q是直线上一动点.问是否存在以点P为直角顶点的等腰Rt△APQ,若存在,请求出此时P的坐标,若不存在,请说明理由.
15、(8分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.
(1)求证:四边形AECD是菱形;
(2)若AB=5,AC=12,求EF的长.
16、(8分)如图,在四边形AECF中,.CE、CF分别是△ABC的内,外角平分线.
(1)求证:四边形AECF是矩形.
(2)当△ABC满足什么条件时,四边形AECF是正方形?请说明理由.
17、(10分)如图,平面直角坐标系中的每个小正方形边长为1,△ABC的顶点在网格的格点上.
(1)画线段AD∥BC,且使AD=BC,连接BD;此时D点的坐标是 .
(2)直接写出线段AC的长为 ,AD的长为 ,BD的长为 .
(3)直接写出△ABD为 三角形,四边形ADBC面积是 .
18、(10分)已知关于x的一元二次方程x2﹣(n+3)x+3n=1.求证:此方程总有两个实数根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:
如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是_____元.
20、(4分)甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,若两人比赛成绩的方差分别为S2甲=1.25和S2乙=3,则成绩比较稳定的是__________(填甲或乙).
21、(4分)对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.
22、(4分)一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式_____.
23、(4分)如图,在Rt△ABC中,已知∠BAC=90°,点D、E、F分别是三边的中点,若AF=3cm,则DE=_____cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)用适当方法解方程:.
25、(10分)如图,平行四边形中,延长至使,连接交于点,点是线段的中点.
(1)如图1,若,,求平行四边形的面积;
(2)如图2,过点作交于点,于点,连接,若,求证:.
26、(12分)(1)解不等式组 (2)解方程:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据一元二次方程的概念逐项进行判断即可.
【详解】
A、含有两上未知数,不符合一元二次方程的概念,故错误;
B、不是整式方程,故错误;
C、最高次数为3次,不符合一元二次方程的概念,故错误;
D、符合一元二次方程的概念,故正确,
故选D.
本题考查了一元二次方程的概念,熟练掌握“一元二次方程是指含有一个未知数,并且含有未知数的项的最高次数为2次的整式方程”是解题的关键.
2、D
【解析】
根据开方开不尽的数是无理数,可对A作出判断;利用一元二次方程的公式法求出方程 x2+x-1=0的解,可对B作出判断,分别求出和的值,可对C作出判断;根据负数没有平方根,可对D作出判断
【详解】
解:A、是无理数,故A不符合题意;
B、x2+x-1=0
b2-4ac=1-4×1×(-1)=5
∴x=
∴是方程x2+x-1=0的一个根,故B不符合题意;
C、∵
∴>0.5
∵
∴<1
∴ 0.5<<1 ,故C不符合题意;
D、∵
∴>0
∴存在实数x,使x2=, 故D符合题意;
故答案为:D
本题主要考查无理数估算,解一元二次方程及平方根的性质,综合性较强,牢记基础知识是解题关键.
3、D
【解析】
试题分析:根据菱形、矩形的判定,平行四边形、矩形的性质进行判断:
A.对角线垂直平分的四边形是菱形,所以A正确;
B.平行四边形的对角线相互平分,所以B正确;
C.矩形的对角线相等,所以C正确;
D.对角线相等的平行四边形是矩形,所以D错误;
考点:菱形、矩形的判定,平行四边形、矩形的性质.
4、A
【解析】
根据不等式的基本性质3,不等式的两边同乘以一个负数,不等号的方向改变,可得x2>ax.
故选A.
5、B
【解析】
依据关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的数,求得a的取值范围,依据关于x的分式方程有整数解,即可得到整数a的取值.
【详解】
解:∵关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限,
∴a+2>0,a-2≤0,
解得-2<a≤2.
∵+2=,
∴x=,
∵关于x的分式方程+2=有整数解,
∴整数a=0,2,3,2,
∵a=2时,x=2是增根,
∴a=0,3,2
综上,可得,满足题意的a的值有3个:0,3,2,
∴整数a值不可能是2.
故选B.
本题考查了一次函数的图象与系数的关系以及分式方程的解.注意根据题意求得使得关于x的分式方程有整数解,且关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的a的值是关键.
6、D
【解析】
直接利用相关实数的性质分析得出答案.
【详解】
①实数和数轴上的点是一一对应的,正确;
②无理数是开方开不尽的数,错误,无理数是无限不循环小数;
③负数没有立方根,错误,负数有立方根;
④16的平方根是±4,用式子表示是:,故此选项错误。
故选:D.
此题考查实数,解题关键在于掌握其定义.
7、C
【解析】
根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.
解答:360°÷30°=1.
故选C.
“点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.
8、C
【解析】
已知点和正方形,即可得C(1,0),代入可得y=2,所以(1,2),又因正方形 ,可得(3,2),设平移后的直线设为,将代入可求得,即直线向右平移的距离为.故选.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.888×
【解析】
先用用科学记数法表示为:的形式,然后将保留4位有效数字可得.
【详解】
18884600=1.88846×≈1.888×
故答案为:1.888×
本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:.
10、3
【解析】
由菱形性质得AC⊥BD,BO= ,AO=,由勾股定理得AO= ,由中位线性质得EF=.
【详解】
因为,菱形ABCD中,对角线AC,BD相交于点O,
所以,AC⊥BD,BO= ,AO=,
所以,AO= ,
所以,AC=2AO=6,
又因为E,F分别是的边AB,BC边的中点
所以,EF=.
故答案为3
本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.
11、
【解析】
根据根的判别式求解即可.
【详解】
∵一元二次方程有实数根
∴
解得
故答案为:.
本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.
12、2a(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
13、C
【解析】
应先判断出点P的横纵坐标的符号,进而判断其所在的象限.
【详解】
解:∵点P的横坐标-2<0,纵坐标为-3<0,
∴点P(-2,-3)在第三象限.
故选:C.
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
三、解答题(本大题共5个小题,共48分)
14、(1),(2)(3),
【解析】
由可得,,,,易证≌,,,因此;
同可证≌,,,,求得最后代入求出一次函数解析式即可;
分两种情况讨论当点Q在x轴下方时,当点Q在x轴上方时根据等腰构建一线三直角,从而求解.
【详解】
如图1,作轴,轴.
,
,,
,
≌,
,,
.
故答案为,;
如图2,过点B作轴.
,
≌,
,,
.
设直线AB的表达式为
将和代入,得
,
解得,
直线AB的函数表达式.
如图3,设,分两种情况:
当点Q在x轴下方时,轴,与BP的延长线交于点.
,
,
在与中
≌
,
,,
,
解得
此时点P与点C重合,
;
当点Q在x轴上方时,轴,与PB的延长线交于点.
同理可证≌.
同理求得
综上,P的坐标为:,
本题考查了一次函数与三角形的全等,熟练掌握一次函数的性质与三角形全等判定是解题的关键.
15、(1)证明见解析;(2).
【解析】
(1)根据平行四边形和菱形的判定证明即可;
(2)根据菱形的性质和三角形的面积公式解答即可.
【详解】
证明:(1)∵AD∥BC,AE∥DC,
∴四边形AECD是平行四边形,
∵∠BAC=90°,E是BC的中点,
∴AE=CE=BC,
∴四边形AECD是菱形
(2)过A作AH⊥BC于点H,
∵∠BAC=90°,AB=5,AC=12,
∴BC=13,
∵,
∴,
∵点E是BC的中点,四边形AECD是菱形,
∴CD=CE,
∵S▱AECD=CE•AH=CD•EF,
∴.
本题考查了菱形的判定和性质,关键是根据平行四边形和菱形的判定和性质解答.
16、(1)见解析;(2)当满足时,四边形AECF是正方形,见解析.
【解析】
(1)求出∠ECF=90°=∠E=∠F,即可推出答案;
(2)∠ACB=90°,推出∠ACE=∠EAC=45°,AE=CE即可.
【详解】
(1)证明:∵CE、CF分别是的内、外角平分线,
,.
,即.
,
∴四边形AECF是矩形.
(2)解:当满足时,四边形AECF是正方形.
理由:
..
∵四边形AECF是矩形,∴四边形AECF是正方形.
故答案为:(1)见解析;(2)当满足时,四边形AECF是正方形,见解析.
本题考查对矩形和正方形的判定的理解和掌握,能求出四边形AECF是矩形是解题的关键.
17、(1)如图所示:D点的坐标是(0,﹣4);(2)线段AC的长为,AD的长为2,BD的长为;(3)△ABD为 直角三角形,四边形ADBC面积是1.
【解析】
(1)根据题意画出图形,进一步得到D点的坐标;
(2)根据勾股定理可求线段AC的长,AD的长,BD的长;
(3)根据勾股定理的逆定理可得△ABD为直角三角形,再根据矩形的面积公式即可求解.
【详解】
(1)如图所示:D点的坐标是(0,﹣4);
(2)线段AC的长为 AD的长为BD的长为
(3)∵
∴△ABD为 直角三角形,四边形ADBC面积是
考查了勾股定理,勾股定理的逆定理,矩形的面积,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
18、见解析.
【解析】
利用根的判别式△≥1时,进行计算即可
【详解】
△=,
所以,方程总有两个实数根.
此题考查根的判别式,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,根据商场所获利润=A种衬衫的利润+B种衬衫的利润+C种衬衫的利润-1000,列出方程,然后根据一次函数的性质可求解.
【详解】
解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,
y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,
∵购进的每一种衬衫的数量都不少于90件,
∴a≥90,
∴当a=90时,y取得最大值,此时y=﹣50×90+44000=1,
故答案为:1.
一次函数在实际生活中的应用是本题的考点,根据题意列出解析式是解题的关键.
20、甲
【解析】
根据方差的意义即可求得答案.
【详解】
∵S甲2=1.25,S乙2=3,
∴S甲2<S乙2,
∴甲的成绩比较稳定,
故答案为:甲.
此题考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定.
21、m>1
【解析】
根据图象的增减性来确定(m﹣1)的取值范围,从而求解.
【详解】
解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,
∴m﹣1>2,
解得,m>1.
故答案是:m>1.
本题考查了一次函数的图象与系数的关系.
函数值y随x的增大而减小⇔k<2;
函数值y随x的增大而增大⇔k>2.
22、y=x+3
【解析】
因为一次函数y=kx+3的图象过点A(1,4),
所以k+3=4,
解得,k=1,
所以,该一次函数的解析式是:y=x+3,
故答案是:y=x+3
【点睛】运用了待定系数法求一次函数解析式,一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).
23、3
【解析】
∵在直角三角形中,斜边上的中线等于斜边的一半,
∴BC=2AF=6cm,
又∵DE是△ABC的中位线,
∴DE=BC=3cm.
故答案为3.
本题考查直角三角形斜边上的中线和三角形的中位线. 在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,且等于第三边的一半.
二、解答题(本大题共3个小题,共30分)
24、,
【解析】
利用分解因式法求解即可.
【详解】
解:原方程可化为:,
∴或,
解得:,.
本题考查的是一元二次方程的解法,属于基础题型,熟练掌握分解因式的方法是解题的关键.
25、(1) (2)见解析
【解析】
(1)首先证明CE⊥AF,想办法求出CD,AE即可解决问题. (2)证明:如图2中,连接BE,作EK⊥AC于K.利用全等三角形的性质证明AG=EK=KG,即可解决问题.
【详解】
(1)解:如图1中,
∵CA=CF,AE=EF, ∴CE⊥AF, ∵CE=1,∠F=30°,
∴CF=CA=2CE=2,AE=EF=,
∵四边形ABCD 平行四边形, ∴AD∥CF, ∴∠D=∠ECF,
∵∠AED=∠CEF,AE=EF, ∴△ADE≌△FCE(AAS),
∴CE=DE=1, ∴CD=2,
∴平行四边形ABCD的面积=CD•AE=.
(2)证明:如图2中,连接BE,作EK⊥AC于K.
∵CE⊥AF,CE∥AB, ∴AB⊥AE,
∵BG⊥AC, ∴∠BAH=∠AEC=∠AGB=90°,
∴∠ABG+∠BAG=90°,∠BAG+∠CAE=90°,
∴∠ABH=∠CAE, ∵BH=AC, ∴△BAH≌△AEC(AAS),
∴BA=AE=CD,AH=CE=DE, ∴AB=2AH,
∵∠ABG=∠EAK,AB=AE,∠AGB=∠AKE,
∴△BGA≌△AKE(AAS), ∴AG=EK,
∴tan∠ABH===,
∴tan∠EAK==, ∴AK=2EK, ∴AG=GK, ∴KG=KE,
∵∠EKG=90°, ∴EG==.
本题考查全等三角形的判定和性质,平行四边形的性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
26、(1) (2)
【解析】
(1)先分别对每个不等式求解,然后求其解集的公共部分即可.(2)按照去分母、去括号、移项、合并同类项、系数化为1,检验的步骤即可解答.
【详解】
解:(1)
由①得
由②得
∴
(2)
经检验是原方程的根
本题考查了不等式组和分式方程的解法,对于不等式组要先分别对每个不等式求解,然后求其解集的公共部分;对分式方程的解法按照去分母、去括号、移项、合并同类项、系数化为1,检验的步骤进行,其中检验是易错点
题号
一
二
三
四
五
总分
得分
型号
A
B
C
进价(元/件)
100
200
150
售价(元/件)
200
350
300
2025届福建省宁化城东中学数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2025届福建省宁化城东中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届福建省福州市金山中学数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2025届福建省福州市金山中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024年新疆库尔勒市14中学数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2024年新疆库尔勒市14中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。