2025届甘肃临夏和政县九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若x2+mxy+y2是一个完全平方式,则m=( )
A.2 B.1 C.±1 D.±2
2、(4分)图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )
A.y=4n﹣4B.y=4nC.y=4n+4D.y=n2
3、(4分)函数与在同一坐标系中的图象可能是( )
A.B.
C.D.
4、(4分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是( )
A.∠A和∠B互为补角B.∠B和∠ADE互为补角
C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角
5、(4分)若=,则的值是()
A.B.C.D.
6、(4分)一个多边形的每个内角均为108º,则这个多边形是( )
A.七边形 B.六边形 C.五边形 D.四边形
7、(4分)利用反证法证明命题“在中,若,则”时,应假设
A.若,则B.若,则
C.若,则D.若,则
8、(4分)于反比例函数的图象,下列说法中,正确的是( )
A.图象的两个分支分别位于第二、第四象限
B.图象的两个分支关于y轴对称
C.图象经过点
D.当时,y随x增大而减小
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,,把绕边上的点顺时针旋转90°得到,交于点,若,则的长是________.
10、(4分)若的整数部分是a,小数部分是b,则______.
11、(4分)一组数据3,2,3,4,的平均数是3,则它的众数是________.
12、(4分)如图,已知:在▱ABCD中,AB=AD=2,∠DAB=60°,F为AC上一点,E为AB中点,则EF+BF的最小值为 .
13、(4分)如果关于x的方程kx2﹣6x+9=0有两个相等的实数根,那么k的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知函数y=和y=,A(1,n)、B(m,4)两点均在函数y=的图像上,设两函数y=和y=的图像交于一点P.
(1)求实数m,n的值;
(2)求P,A,B三点构成的三角形PAB的面积.
15、(8分)甲、乙两人参加操作技能培训,他们在培训期间参加的5次测试成绩(满分10分)记录如下:
(1)若从甲、乙两人中选派一人参加操作技能大赛,你认为应选谁?为什么?
(2)如果乙再测试一次,成绩为8分,请计算乙6次测试成绩的方差(结果保留小数点后两位).
16、(8分)我市从 2018 年 1 月 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多.某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.
(1)求 A、B 两种型号电动自行车的进货单价;
(2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y 与 m 之间的函数关系式;
(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.
17、(10分)在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:
(1)上表中的a= ;
(2)“摸到白球”的概率的估计值是 (精确到0.1)
(3)试估算口袋中黑、白两种颜色的球各有多少个?
18、(10分)在数学拓展课上,老师让同学们探讨特殊四边形的做法:
如图,先作线段,作射线(为锐角),过作射线平行于,再作和的平分线分别交和于点和,连接,则四边形为菱形;
(1)你认为该作法正确吗?请说明理由.
(2)若,并且四边形的面积为,在上取一点,使得.请问图中存在这样的点吗?若存在,则求出的长;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,四边形ABCD、DEFG都是正方形,AB与CG交于点下列结论:;;;;其中正确的有______;
20、(4分)如图,在中,分别以点为圆心,大于的长为半径画弧,两弧交于点,作直线交于点,交于点,连接.若,连接点和的中点,则的长为_______.
21、(4分)一次函数y=kx-2的函数值y随自变量x的增大而减小,则k的取值范围是__.
22、(4分)分解因式:=______.
23、(4分)已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+= .
二、解答题(本大题共3个小题,共30分)
24、(8分)解关于x的方程:
25、(10分)先化简,再求值:(x+2-)•,其中x=3+.
26、(12分)如图所示,在边长为1的网格中作出△ABC绕点A按逆时针方向旋转90∘,再向下平移2格后的图形△A′B′C′.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】根据完全平方公式:(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2可知,要使x2+mxy+y2符合完全平方公式的形式,该式应为:x2+2xy+y2=(x+y)2或x2-2xy+y2=(x-y)2. 对照各项系数可知,系数m的值应为2或-2.
故本题应选D.
点睛:
本题考查完全平方公式的形式,应注意完全平方公式有(a+b)2、(a-b)2两种形式. 考虑本题时要全面,不要漏掉任何一种形式.
2、B
【解析】
试题解析:由题图可知:
n=1时,圆点有4个,即y=4×1=4;
n=2时,圆点有8个,即y=4×2=8;
n=3时,圆点有12个,即y=4×3=12;
……
∴y=4n.
故选B.
3、D
【解析】
根据k值的正负,判断一次函数和反比例函数必过的象限,二者一致的即为正确答案.
【详解】
在函数与中,
当k>0时,图象都应过一、三象限;
当k<0时,图象都应过二、四象限,
故选:D.
本题考查了一次函数与反比例函数的图象和性质,掌握一次函数和反比例函数的图象和性质是解题的关键.
4、C
【解析】
试题分析:根据余角的定义,即可解答.
解:∵∠C=90°,
∴∠A+∠B=90°,
∵∠B=∠ADE,
∴∠A+∠ADE=90°,
∴∠A和∠ADE互为余角.
故选C.
考点:余角和补角.
5、A
【解析】
先设a=2k,则b=5k,然后将它们分别代入,计算即可求出其值即可.
【详解】
解:∵=,
设a=2k,则b=5k,
∴=.
故选A.
本题考查了比例的基本性质,比较简单,关键是巧设未知数,可使计算简便.
6、C
【解析】
试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360
÷72=5(边).
考点:⒈多边形的内角和;⒉多边形的外角和.
7、C
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,据此进行解答.
【详解】
解:用反证法证明命题“在中,若,则”时,应假设若,则,
故选:.
本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
8、D
【解析】
根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.
【详解】
:A.∵k=2>0,∴它的图象在第一、三象限,故A选项错误;
B.图象的两个分支关于y=-x对称,故B选项错误;
C.把点(1,1)代入反比例函数得2≠1,故C选项错误;
D.当x>0时,y随x的增大而减小,故D选项正确.
故选D.
本题考查了反比例函数(k≠0)的图象及性质,①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
在Rt△ACB中,,由题意设BD=B′D=AE=x,由△EDB′∽△ACB,可得,推出,可得,求出x即可解决问题。
【详解】
解:在中,,
由题意设,
∵,
∴,
∴,
∴,
∴,
∴,
故答案为2.
本题考查旋转变换、直角三角形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会理由参数构建方程解决问题,所以中考常考题型.
10、1.
【解析】
若的整数部分为a,小数部分为b,
∴a=1,b=,
∴a-b==1.
故答案为1.
11、1
【解析】
由于数据2、1、1、4、x的平均数是1,由此利用平均数的计算公式可以求出x,再根据众数的定义求出这组数的众数即可.
【详解】
∵数据2、1、1、4、x的平均数是1,
∴2+1+1+4+x=1×5,
∴x=1,
则这组数据的众数即出现最多的数为1.
故答案为:1.
此题考查平均数和众数的概念.解题关键在于注意一组数据的众数可能不只一个.
12、.
【解析】
试题分析:首先菱形的性质可知点B与点D关于AC对称,从而可知BF=DF,则EF+BF=EF+DF,当点D、F、E共线时,EF+BF有最小值.
解:∵▱ABCD中,AB=AD,
∴四边形ABCD为菱形.
∴点D与点B关于AC对称.
∴BF=DF.
连接DE.
∵E是AB的中点,
∴AE=1.
∴=
又∵∠DAB=60°,
∴cs∠DAE=.
∴△ADE为直角三角形.
∴DE===,
故答案为:.
【点评】本题主要考查的是最短路径、平行四边形的性质以及菱形的性质和判定,由轴对称图形的性质将EF+FB的最小值转化为DF+EF的最小值是解题的关键.
13、1.
【解析】
根据题意方程有两个相等实根可知△=0,代入求值即可解题.
【详解】
∵关于x的方程kx2﹣6x+9=0有两个相等的实数根,
∴△=(﹣6)2﹣4k×9=0且k≠0,
解得:k=1,
故答案为:1.
本题考查了一元二次方程根的判别式,本题解题关键是根据题意得到根的情况,代值到判别式即可解题.
三、解答题(本大题共5个小题,共48分)
14、(1),n=2;(2)3
【解析】
(1)根据待定系数法求解即可;
(2)联立方程组求出点P的坐标,可得点与点关于原点对称,从而可得,设直线的解析式为,,根据待定系数法求出k,b的值,即可求出直线与轴的交点为,从而求出.
【详解】
解:(1)将,两点坐标代入,求得,.
(2)联立方程组,消去得,解得,.
∴,,三点坐标为,,.
∴点与点关于原点对称.
∴.
设直线的解析式为,将,坐标代入得,
解得,.
∴直线与轴的交点为D.
∴.
∴.
本题考查了反比例函数的几何问题,掌握待定系数法、反比例函数的性质、一次函数的性质是解题的关键.
15、(1)甲;(2)2.1.
【解析】
(1)从平均数与方差上进行分析,根据方差越大,波动越大,数据越不稳定,反之,方差越小,波动越小,数据越稳定即可求出答案;
(2)根据方差的计算公式进行计算即可得.
【详解】
解:(1)从平均数看,甲、乙的平均数一样,都是8分,
从方差看,0.4<3.2,即甲的方差比乙的方差小,甲的成绩比较稳定,因此应该选派甲去参加操作技能大赛;
(2)乙的平均数为:(5+9+7+10+9+8)÷6=8,
方差为:=≈2.1,
答:乙6次测试成绩的方差为2.1.
本题考查了方差的意义,熟练掌握方差的意义以及方差的计算公式是解题的关键.
16、(1)A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 时,y 有最大值,最大值为 11000 元.
【解析】
(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500)元,根据用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样,列分式方程即可解决问题;
(2)根据总利润=A 型的利润+B 型的利润,列出函数关系式即可;
(3)利用一次函数的性质即可解决问题.
【详解】
解:(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500) 元,
由题意:=,
解得:x=2500,
经检验:x=2500 是分式方程的解,
答:A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;
(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);
(3)∵y=300m+500(30﹣m)=﹣200m+15000,
∵﹣200<0,20≤m≤30,
∴m=20 时,y 有最大值,最大值为 11000 元.
本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.
17、 (1) 0.58;(2) 0.6;(3)白球12(个),黑球8 (个)
【解析】
(1)利用频率=频数÷样本容量直接求解即可;
(2)根据统计数据,当n很大时,摸到白球的频率接近0.60;
(3)根据利用频率估计概率,可估计摸到白球的概率为0.60,然后利用概率公式计算白球的个数.
【详解】
(1)a= =0.58,
故答案为:0.58;
(2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,
故答案为:0.60;
(3)由(2)摸到白球的概率估计值为0.60,
所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20−12=8(个).
答:黑球8个,白球12个.
本题考查利用频率估计概率,事件A发生的频率等于事件A出现的次数除以实验总次数;在实验次数非常大时,事件A发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.
18、(1)作法正确(2)或
【解析】
(1)根据作法可以推出,又因为,所以四边形是平行四边形,又,所以四边形是菱形,因此作法正确;
(2)作,由面积公式可求出,由菱形的性质可得AD=AB=4,用勾股定理可得,由锐角三角函数得,所以是正三角形.再根据菱形对角线互相垂直的性质,利用勾股定理解得或.
【详解】
(1)作法正确.理由如下:
∵
∴
∵平分,平分
∴
∴
∴
又∵
∴四边形是平行四边形
∵
∴四边形是菱形.
故作法正确.
(2)存在.
如图,作
∵,
∴ 且
∴由勾股定理得
∴由锐角三角函数得
∴是正三角形
∴
∵ ∴
∴或
本题考查了菱形的性质和判定,勾股定理和锐角三角函数,是一个四边形的综合题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据正方形的性质可得,,,然后求出,再利用“边角边”证明和全等,根据全等三角形对应边相等可得,判定正确;根据全等三角形对应角相等可得,再求出,然后求出,判定正确;根据直角三角形斜边上的中线等于斜边的一半可得,判定正确;求出点D、E、G、M四点共圆,再根据同弧所对的圆周角相等可得,判定正确;得出,判定GE错误.
【详解】
四边形ABCD、DEFG都是正方形,
,,,
,
即,
在和中,
,
≌,
,故正确;
,
,
,
,故正确;
是正方形DEFG的对角线的交点,
,
,故正确;
,
点D、E、G、M四点共圆,
,故正确;
,
,
不成立,故错误;
综上所述,正确的有.
故答案为.
本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,以及四点共圆,熟练掌握各性质是解题的关键.
20、1
【解析】
由作图可知,MN为AB的垂直平分线,根据线段垂直平分线的性质得到AF=BF=6,且AE=BE,由线段中点的定义得到EG为△ABC的中位线,从而可得出结果.
【详解】
解:∵由作图可知,MN为AB的垂直平分线,
∴AE=BE,=6,
∴.
而是的中位线,
∴.
故答案为:1.
本题考查了基本作图-作已知线段的垂直平分线:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.同时也考查了线段垂直平分线的性质以及三角形的中位线的性质.
21、k<1
【解析】
根据一次函数图象的增减性来确定k的符号即可.
【详解】
解:∵一次函数y=kx-2的函数值y随自变量x的增大而减小,
∴k<1,
故答案为k<1.
本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠1)中,当k>1时,y随x的增大而增大;当k<1时,y随x的增大而减小.
22、x(x+2)(x﹣2).
【解析】
试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用;因式分解.
23、1
【解析】
试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.
故答案为1.
考点:根与系数的关系.
二、解答题(本大题共3个小题,共30分)
24、x=-5
【解析】
试题分析:方程左右两边同时乘以(x+1)(x-1),解出x以后要验证是否为方程的增根.
试题解析:
3(x+1)+2x(x-1)=2(x+1)(x-1)
3x+3+2x2-2x=2x2-2
x=-5.
经检验x=-5为原方程的解.
点睛:掌握分式方程的求解.
25、x-3,
【解析】
原式括号内先通分,再算减法,然后进行分式的乘法运算,再把x的值代入化简后的式子计算即可.
【详解】
解:原式=•=•=•=x-3;
当x=3+时,原式=3+-3=.
本题考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.
26、见解析.
【解析】
先作出绕点逆时针旋转的三角形,然后再下平移2格的对应点、、,然后顺次连接即可.
【详解】
如图所示,虚线三角形为绕点按逆时针方向旋转的三角形,
即为所要求作的三角形.
本题考查了利用平移变换与旋转变换作图,本题先作出绕点逆时针旋转的三角形是解题的关键.
题号
一
二
三
四
五
总分
得分
5次测试成绩(分)
平均数
方差
甲
8
8
7
8
9
8
0.4
乙
5
9
7
10
9
8
3.2
2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年深圳龙文数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省兰州十九中学教育集团九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024年甘肃省兰州十九中学教育集团九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市燕山区九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024年北京市燕山区九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

