2024年甘肃省武威市民勤五中学九上数学开学质量跟踪监视试题【含答案】
展开
这是一份2024年甘肃省武威市民勤五中学九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为( )
A.x≥2B.x<2C.x>2D.x≤2
2、(4分)如图,在中,,将沿方向平移个单位后得到,连接,则的长为( )
A.B.C.D.
3、(4分)若把分式的x、y同时扩大3倍,则分式值( )
A.不变B.扩大为原来的3倍C.缩小为原来的D.扩大为原来的9倍
4、(4分)把多项式4a2b+4ab2+b3因式分解正确的是( )
A.a(2a+b)2B.b(2a+b)2C.(a+2b)2D.4b(a+b)2
5、(4分)故宫是世界上现存规模最大,保存最完整的宫殿建筑群.下图是利用平面直角坐标系画出的故宫的主要建筑分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向,建立平面直角坐标系,有如下四个结论:
①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5);
②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,3);
③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,1);
④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6).上述结论中,所有正确结论的序号是( )
A.①②B.①③C.①④D.②③
6、(4分)矩形具有而菱形不一定具有的性质是( )
A.对角相等B.对边相等C.对角线相等D.对角线互相垂直
7、(4分)如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是( )
A.AE=CFB.BE=DFC.∠EBF=∠FDED.∠BED=∠BFD
8、(4分)关于x的分式方程有增根,则a的值为( )
A.﹣3B.﹣5C.0D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一同学在广场边的一水坑里看到一棵树,他目测出自己与树的距离约为20m,树的顶端在水中的倒影距自己约5m远,该同学的身高为1.7m,则树高约为_____m.
10、(4分)一组数据;1,3,﹣1,2,x的平均数是1,那么这组数据的方差是_____.
11、(4分)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_____.
12、(4分)若关于x的方程+=0有增根,则m的值是_____.
13、(4分)直线y=3x-2不经过第________________象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)用适当的方法解方程
(1)
(2)
15、(8分)如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).
(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;
(2)从对称的角度来考虑,说一说你是怎样得到的;
(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.
16、(8分)(1);
(2)
17、(10分)李师傅去年开了一家商店.今年1月份开始盈利,2月份盈利3000元,4月份的盈利达到4320元,且从2月到4月,每月盈利的平均增长率都相同.
(1)求每月盈利的平均增长率;
(2)按照这个平均增长率,预计5月份这家商店的盈利可达到多少元?
18、(10分)如图,正方形的对角线、相交于点,,.
(1)求证:四边形是正方形.
(2)若,则点到边的距离为______.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,一张矩形纸片的长AD=12,宽AB=2,点E在边AD上,点F在边BC上,将四边形ABFE沿直线EF翻折后,点B落在边AD的三等分点G处,则EG的长为_______.
20、(4分)已知关于x的方程x2+mx-2=0的两个根为x1、x2,若x1+x2-x1x2=6,则m=______.
21、(4分)若点A(2,m)在平面直角坐标系的x轴上,则点P(m-1,m+3)到原点O的距离为_____.
22、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.
23、(4分)若设A=,当=4时,记此时A的值为;当=3时,记此时A的值为;……则关于的不等式的解集为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.
25、(10分)在中,BD是它的一条对角线,过A、C两点分别作,,E、F为垂足.
(1)如图,求证:;
(2)如图,连接AC,设AC、BD交于点O,若.在不添加任何辅助线的情况下,请直接写出图中的所有长度是OE长度2倍的线段.
26、(12分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.
(1)求出太阳花的付款金额(元)关于购买量(盆)的函数关系式;
(2)求出绣球花的付款金额(元)关于购买量(盆)的函数关系式;
(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
直接将解集在数轴上表示出来即可,注意实心和空心的区别
【详解】
数轴上读出不等式解集为x≤2,故选D
本题考查通过数轴读出不等式解集,属于简单题
2、B
【解析】
根据平移的性质可得DE=AB=4,BC-BE=6-2=4,然后根据等边三角形的定义列式计算即可得解.
【详解】
解:∵△ABC沿射线BC方向平移2个单位后得到△DEF,
∴DE=AB=4,BC-BE=6-2=4,
∵∠B=∠DEC=60°,
∴△DEC是等边三角形,
∴DC=4,
故选:B .
本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.
3、B
【解析】
将,扩大3倍,即将,用,代替,就可以解出此题.
【详解】
解:,
分式值扩大3倍.
故选:B.
此题考查的是对分式的性质的理解和运用,扩大或缩小倍,就将原来的数乘以或除以后代入计算是解题关键.
4、B
【解析】
先提公因式,再利用完全平方公式因式分解.
【详解】
4a2b+4ab2+b3
=b(4a2+4ab+b2)
=b(2a+b)2,
故选B.
本题考查的是因式分解,掌握提公因式法、完全平方公式是解题的关键.
5、C
【解析】
根据各结论所给两个点的坐标得出原点的位置及单位长度从而得到答案.
【详解】
①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5),正确;
②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,2.5),错误;
③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,2),错误;
④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6),正确,
故选:C.
此题考查平面直角坐标系中用点坐标确定具体位置,由给定的点坐标确定原点及单位长度是解题的关键.
6、C
【解析】
根据菱形和矩形的性质即可判断.
【详解】
解:因为矩形的性质:对角相等、对边相等、对角线相等;
菱形的性质:对角相等、对边相等、对角线互相垂直.
所以矩形具有而菱形不一定具有的性质是对角线相等.
故选:C.
本题主要考查矩形和菱形的性质,掌握矩形和菱形的性质是解题的关键.
7、B
【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
【详解】
四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠EBF=∠FDE,
∴∠BED=∠BFD,
四边形BFDE是平行四边形,
∴BE//DF,
故本选项能判定BE//DF;
D、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠BED=∠BFD,
∴∠EBF=∠FDE,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF.
故选B.
本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
8、B
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程计算即可求出a的值.
【详解】
分式方程去分母得:x−2=a,
由分式方程有增根,得到x+3=0,即x=−3,
把x=−3代入整式方程得:a=−5,
故选:B.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5.1.
【解析】
因为入射光线和反射光线与镜面的夹角相等,所以构成两个相似三角形,根据相似三角形的性质解答即可.
【详解】
由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,
故△ABC∽△AED,
由相似三角形的性质,设树高x米,
则,
∴x=5.1m.
故答案为:5.1.
本题考查的是相似三角形的应用,因为入射光线和反射光线与镜面的夹角相等,所以构成两个相似三角形.
10、1
【解析】
先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x1,…xn的平均数为,),则方差.
【详解】
解:x=1×5﹣1﹣3﹣(﹣1)﹣1=0,
s1= [(1﹣1)1+(1﹣3)1+(1+1)1+(1﹣1)1+(1﹣0)1]=1.
故答案为1.
本题考查了方差的定义:一般地设n个数据,x1,x1,…xn的平均数为,),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
11、
【解析】
过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.
解:如图,过点D作DE⊥DP交BC的延长线于E,
∵∠ADC=∠ABC=90°,
∴四边形DPBE是矩形,
∵∠CDE+∠CDP=90°,∠ADC=90°,
∴∠ADP+∠CDP=90°,
∴∠ADP=∠CDE,
∵DP⊥AB,
∴∠APD=90°,
∴∠APD=∠E=90°,
在△ADP和△CDE中,
∠ADP=∠CDE,∠APD=∠E,AD=CD,
∴△ADP≌△CDE(AAS),
∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,
∴矩形DPBE是正方形,
∴DP=.
故答案为3.
“点睛”本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.
12、3
【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.
【详解】
去分母得:2﹣x+m=0,
解得:x=2+m,
由分式方程有增根,得到x﹣5=0,即x=5,
把x=5代入得:m=3,
故答案为:3
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
13、二
【解析】
根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.
【详解】
解:∵k=3>0,图象过一三象限,b=-2<0过第四象限
∴这条直线一定不经过第二象限.
故答案为:二
此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
三、解答题(本大题共5个小题,共48分)
14、见详解.
【解析】
(1)把x+1看成一个整体,利用直接开平方法求解即可.
(2)先把它化成一般式,再利用公式法求解即可.
【详解】
解:(1)
X+1=
X=-1
(2)
∵a=2,b=-5,c=-1.
∴=b2-4ac=(-5)2-42(-1)=25+8=33>0.
∴x===.
本题考查了一元二次方程 的解法,灵活运用一元二次方程的
解法是解题的关键.
15、 (1)左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴角的左端点坐标为(-4,1),右端点坐标为(-2,1); (2)见解析;(3) (-2,-1),(-4,-1).
【解析】
(1)根据图形的位置关系可知:将右图案向左平移6个单位长度得到左图案等.
(2)根据题意可知,这两个图是关于y轴对称的,所以根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知左图案的左右眼睛的坐标和嘴角左右端点的坐标;
(3)根据“两点关于原点对称,横坐标互为相反数,纵坐标互为相反数”求解即可.
【详解】
(1)左图案中的左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴角的左端点坐标为(-4,1),右端点坐标为(-2,1).
(2)关于y轴对称的两个图形横坐标互为相反数,纵坐标不变..
(3) (-2,-1),(-4,-1).
主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
16、(1);(2)-5.
【解析】
(1)首先根据立方根、零次幂、负指数幂和绝对值的性质化简,然后计算即可;
(2)将二次根式化简,然后应用乘法分配律,进行计算即可.
【详解】
解:(1)原式;
(2)原式.
此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
17、(1)该商店的每月盈利的平均增长率为20%.(2)5月份盈利为5184元.
【解析】
(1)设该商店的月平均增长率为x,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.
(2)5月份盈利=4月份盈利×增长率.
【详解】
(1)设该商店的每月盈利的平均增长率为x,根据题意得:
3000(1+x)2=4320,
解得:x1=20%,x2=-2.2(舍去).
(2)由(1)知,该商店的每月盈利的平均增长率为20%,则5月份盈利为:
4320×(1+20%)=5184(元).
答:(1)该商店的每月盈利的平均增长率为20%.
(2)5月份盈利为5184元.
此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用-,难度一般.
18、 (1)证明见解析;(2)1.5.
【解析】
(1)首先根据已知条件可判定四边形OCED是平行四边形,然后根据正方形对角线互相平分的性质,可判定四边形OCED是菱形,又根据正方形的对角线互相垂直,即可判定四边形OCED是正方形;
(2)首先连接EO,并延长EO交AB于点F,根据已知条件和(1)的结论,可判定EF即为点E到AB的距离,即为EO和OF之和,根据勾股定理,可求出AD和CD,即可得解.
【详解】
解:(1)∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是正方形,
∴AC=BD, ,
∴OC=OD.
∴四边形OCED是菱形.
∵AC⊥BD,
∴∠COD=90°.
∴四边形OCED是正方形.
(2)解:连接EO,并延长EO交AB于点F,如图所示
由(1)中结论可得,OE=CD
又∵正方形ABCD,,AD=CD,OF⊥AB
∴
∴AD=CD=1,
∴
∴
EF即为点E到AB的距离,
故答案为1.5.
此题主要考查正方形的判定和利用正方形的性质求解线段的长度,熟练运用即可解题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或
【解析】
如图,作GH⊥BC于H.则四边形ABHG是矩形.G是AD的三等分点,推出AG=4或8,证明EG=FG=FB,设EG=FG=FB=x,分两种情形构建方程即可解决问题.
【详解】
解:如图,作GH⊥BC于H.则四边形ABHG是矩形.
∵G是AD的三等分点,
∴AG=4或8,
由翻折可知:FG=FB,∠EFB=∠EFG,设FG=FB=x.
∵AD∥BC,
∴∠FEG=∠EFB=∠GFE,
∴EG=FG=x,
在Rt△FGH中,∵FG2=GH2+FH2,
∴x2=22+(4-x)2或x2=22+(8-x)2
解得:x=或,
故答案为或.
本题考查翻折变换,矩形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
20、-2
【解析】
利用根与系数的关系求出两根之和与两根之积,代入所求式子中计算即可求出值.
【详解】
解:依题意得:x1+x1=-m,x1x1=-1.
所以x1+x1-x1x1=-m-(-1)=6
所以m=-2.
故答案是:-2.
此题考查了一元二次方程根与系数的关系,一元二次方程ax1+bx+c=0(a≠0)的根与系数的关系为:x1+x1=-,x1•x1=.
21、
【解析】
首先根据x轴上的点纵坐标为0得出m的值,再根据勾股定理即可求解.
【详解】
解:∵点A(2,m)在直角坐标系的x轴上,
∴m=0,
∴点P(m-1,m+3),即(-1,3)到原点O的距离为.
故答案为:.
本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.求出m的值是解题的关键.
22、()n-1
【解析】
试题分析:已知第一个矩形的面积为1;
第二个矩形的面积为原来的()2-1=;
第三个矩形的面积是()3-1=;
…
故第n个矩形的面积为:.
考点:1.矩形的性质;2.菱形的性质.
23、.
【解析】
先对A化简,然后根据题意求出f(3)+f(4)+...+f(119)的值,然后求不等式的解集即可解答本题.
【详解】
解:A===
f(3)=,…,f(119)=
所以:f(3)+…+f(119)=+…+==
解得:,故答案为.
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于中等题型.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)利用菱形的性质得到AD=CD,∠A=∠C,进而利用AAS证明两三角形全等;
(2)根据△ADE≌△CDF得到AE=CF,结合菱形的四条边相等即可得到结论.
试题解析:证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠A=∠C,∵DE⊥BA,DF⊥CB,∴∠AED=∠CFD=90°,在△ADE和△CDE,∵AD=CD,∠A=∠C,∠AED=∠CFD=90°,∴△ADE≌△CDE;
(2)∵四边形ABCD是菱形,∴AB=CB,∵△ADE≌△CDF,∴AE=CF,∴BE=BF,∴∠BEF=∠BFE.
点睛:本题主要考查了菱形的性质以及全等三角形的判定与性质,解题的关键是掌握菱形的性质以及AAS证明两三角形全等.
25、(1)见解析;(2)OA、OC、EF.
【解析】
(1)根据平行四边形的AD∥BC,AB∥CD,AD=BC,AB=CD,根据平行线的性质得到∠ADE=∠CBF,由垂直的定义得到∠AEB=∠CFD=90°,根据全等三角形的性质即可得到结论;
(2)根据平行四边形的性质得到AO=CO,根据直角三角形的性质即可得到结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形
∴
∴
∵,,
∴
在和中
∴
∴
(2)∵四边形ABCD是平行四边形,
∴AO=CO,
∵∠DOC=120°,
∴∠AOE=60°,
∴∠OAE=30°,
∴AO=2OE,
∴OC=2OE,
∵OD=OB,DE=BF,
∴OE=OF,
∴EF=2OE.
本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.
26、(1):y1=6x;(2)y2=;(3)太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元
【解析】
(1)根据总价=单价×数量,求出太阳花的付款金额y1(元)关于购买量x(盆)的函数解析式;
(2分两种情况:①一次购买的绣球花不超过20盆;②一次购买的绣球花超过20盆;根据总价=单价×数量,求出绣球花的付款金额y2(元)关于购买量x(盆)的函数解析式即可;
(3)首先太阳花数量不超过绣球花数量的一半,可得太阳花数量不超过两种花数量的,即太阳花数量不超过30盆,所以绣球花的数量不少于60盆;然后设太阳花的数量是x盆,则绣球花的数量是90-x盆,根据总价=单价×数量,求出购买两种花的总费用是多少,进而判断出两种花卉各买多少盆时,总费用最少,最少费用是多少元即可.
【详解】
解:(1)太阳花的付款金额y1(元)关于购买量x(盆)的函数解析式是:y1=6x;
(2)①一次购买的绣球花不超过20盆时,
付款金额y2(元)关于购买量x(盆)的函数解析式是:y2=10x(x≤20);
②一次购买的绣球花超过20盆时,
付款金额y2(元)关于购买量x(盆)的函数解析式是:
y2=10×20+10×0.8×(x-20)
=200+8x-160
=8x+40
综上,可得
绣球花的付款金额y2(元)关于购买量x(盆)的函数解析式是:
y2=
(3)根据题意,可得太阳花数量不超过:90×(盆),
所以绣球花的数量不少于:90-30=60(盆),
设太阳花的数量是x盆,则绣球花的数量是(90-x)盆,购买两种花的总费用是y元,
则x≤30,
则y=6x+[8(90-x)+40]
=6x+[760-8x]
=760-2x,
∵-2<0,
∴y随x的增大而减小,
∵x≤30,
∴当x=30时,
y最小=760-2×30=700(元),
90-30=60盆,
答:太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.
本题主要考查了一次函数的应用,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.此题还考查了单价、总价、数量的关系:总价=单价×数量,单价=总价÷数量,数量=总价÷单价,要熟练掌握.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年甘肃省兰州十九中学教育集团九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年北京市第一五九中学数学九上开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年白山市重点中学九上数学开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。