|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届甘肃省临泽县数学九年级第一学期开学学业质量监测模拟试题【含答案】
    立即下载
    加入资料篮
    2025届甘肃省临泽县数学九年级第一学期开学学业质量监测模拟试题【含答案】01
    2025届甘肃省临泽县数学九年级第一学期开学学业质量监测模拟试题【含答案】02
    2025届甘肃省临泽县数学九年级第一学期开学学业质量监测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届甘肃省临泽县数学九年级第一学期开学学业质量监测模拟试题【含答案】

    展开
    这是一份2025届甘肃省临泽县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:
    ①一次购买种子数量不超过l0千克时,销售价格为5元/千克;
    ②一次购买30千克种子时,付款金额为100元;
    ③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:
    ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.
    其中正确的个数是
    A.1个B.2个C.3个D.4个
    2、(4分)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )
    A.80分B.82分C.84分D.86分
    3、(4分)若点P到△ABC的三个顶点的距离相等,则点P是△ABC( )
    A.三条高的交点B.三条角平分线的交点
    C.三边的垂直平分线的交点D.三条中线的交点
    4、(4分)若点P(-2,a)在第二象限,则a的值可以是( )
    A.1B.-1C.0D.-2
    5、(4分)抛物线的顶点坐标是( )
    A.B.C.D.
    6、(4分)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是1环,甲的方差是1.2,乙的方差是1.1.下列说法中不一定正确的是( )
    A.甲、乙射中的总环数相同B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙的众数相同
    7、(4分)下列图形中既是轴对称图形又是中心对称图形的是( ).
    A.B.C.D.
    8、(4分)如图,已知正方形ABCD的边长为5,E为BC边上的一点,∠EBC=30°,则BE的长为 ( )
    A.cmB.2cm C.5 cmD.10 cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为,点P是y轴上一动点,当的周长最小时,线段OP的长为______.
    10、(4分)若a、b,c为三角形的三边,则________。
    11、(4分)把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式_____.
    12、(4分)若关于x的方程的解为负数,则a的取值范围为______.
    13、(4分)已知,菱形中,、分别是、上的点,且,,则__________度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)星马公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试成果认定,三项得分满分都为100分,三项的分数分别为 的比例计入每人的最后总分,有4位应聘者的得分如下所示:
    (1)写出4位应聘者的总分;
    (2)已知这4人专业知识、英语水平、参加社会实践与社团活动等三项的得分对应的方差分别为12.5、6.25、200,你对应聘者有何建议?
    15、(8分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.
    (1)直接写出点M的坐标为 ;
    (2)求直线MN的函数解析式;
    (3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.
    16、(8分)已知△ABC,分别以BC,AB,AC为边作等边三角形BCE,ACF,ABD
    (1)若存在四边形ADEF,判断它的形状,并说明理由.
    (2)存在四边形ADEF的条件下,请你给△ABC添个条件,使得四边形ADEF成为矩形,并说明理由.
    (3)当△ABC满足什么条件时四边形ADEF不存在.
    17、(10分)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.
    求证:四边形ECCD是矩形.
    18、(10分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.
    (1)若AB=2,求四边形ABFG的面积;
    (2)求证:BF=AE+FG.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S甲 2=17,S乙 2=1.则成绩比较稳定的是 (填“甲”、“乙”中的一个).
    20、(4分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是_____.
    21、(4分)如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为________.
    22、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
    23、(4分)如图,直线、、、互相平行,直线、、、互相平行,四边形面积为,四边形面积为,则四边形面积为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.
    25、(10分)商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:
    (1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?
    (2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?
    26、(12分)如图1,在中,,,、分别是、边上的高,、交于点,连接.
    (1)求证:;
    (2)求的度数;
    (3)如图2,过点作交于点,探求线段、、的数量关系,并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    ①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;
    ②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;
    ③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;
    ④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.
    解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;
    ②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;
    ③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;
    ④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,
    分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,
    而150-125=25元,
    所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.
    故选D.
    2、D
    【解析】
    试题分析:利用加权平均数的公式直接计算即可得出答案.
    由加权平均数的公式可知===86
    考点:加权平均数.
    3、C
    【解析】
    根据线段垂直平分线上的点到两端点的距离相等进行解答.
    【详解】
    解:垂直平分线上任意一点,到线段两端点的距离相等,
    到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
    故选:C.
    本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.
    4、A
    【解析】
    根据第二象限内点的纵坐标是正数判断.
    【详解】
    ∵点P(-2,a)在第二象限,
    ∴a>0,
    ∴1、0、-1、-2四个数中,a的值可以是1.
    故选A.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    5、D
    【解析】
    当 时,是抛物线的顶点,代入求出顶点坐标即可.
    【详解】
    由题意得,当 时,是抛物线的顶点
    代入到抛物线方程中
    ∴顶点的坐标为
    故答案为:D.
    本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.
    6、D
    【解析】
    解:A、根据平均数的定义,正确;
    B、根据方差的定义,正确;
    C、根据方差的定义,正确,
    D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.
    故选D
    7、B
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项正确;
    C、是轴对称图形,不是中心对称图形,故此选项错误;
    D、不是轴对称图形,是中心对称图形,故此选项错误;
    故选:B.
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    8、D
    【解析】
    试题解析:设


    根据勾股定理,


    故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据题意可以得到点A、B、C的坐标和点D的坐标,然后最短路径问题可以求得点P的坐标,从而可以求得OP的长.
    【详解】
    解:作点D关于y轴的对称点,连接交y轴于点P,则点P即为所求,
    直线AC的解析式为,
    当时,,当时,,
    点A的坐标为,点C的坐标为,
    点D的坐标为,点B的坐标为,
    点的坐标为,
    设过点B和点的直线解析式为,

    解得,,
    过点B和点的直线解析式为,
    当时,,
    即点P的坐标为,
    .
    故答案为.
    本题考查一次函数的性质、矩形的性质、最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    10、2a
    【解析】
    根据三角形三条边的长度关系,可以得到两个括号内的正负情况;再根据一个数先平方,后开方,所得的结果是这个数的绝对值,来计算这个式子.
    【详解】
    ∵a,b,c是三角形的三边,
    三角形任意两边之和大于第三边,任意两条边之差小于第三边,
    ∴a+b-c>0,b-c-a<0,
    所以==.
    本题主要考查了三角形三边的边长关系:三角形任意两条边之和大于第三边,任意两条边之差小于第三边.解决本题,还需要清楚地明白一个数先平方后开方,所得的就是这个数的绝对值.
    11、y=2x2+1.
    【解析】
    先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式即可.
    【详解】
    抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=2x2+1.
    故答案是:y=2x2+1.
    本题考查了抛物线的平移,根据平移规律得到平移后抛物线的顶点坐标为(0,1)是解决问题的关键.
    12、且
    【解析】
    当x≠﹣1时,解出x含a的表达式,令其小于零且不等于-1,直接解出即可.
    【详解】
    当x≠﹣1时,1x-a=0,x=<0,解得a<0,
    且,解得a≠﹣1.
    综上所述且.
    故答案为:且.
    本题考查解分式方程和解不等式,关键在于牢记分式有意义的条件,熟练掌握解方程的步骤.
    13、
    【解析】
    先连接AC,证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后运用三角形外角性质,求出∠CEF的度数.
    【详解】
    如图,连接AC,
    在菱形ABCD中,AB=BC,
    ∵∠B=60°,
    ∴△ABC是等边三角形,
    ∴AB=AC,
    ∵∠BAE+∠CAE=∠BAC=60°,
    ∠CAF+∠EAC=∠EAF=60°,
    ∴∠BAE=∠CAF,
    ∵∠B=∠ACF=60°,
    在△ABE和△ACF中,
    ∠B=∠ACF,AB=AC,∠BAE=∠CAF,
    ∴△ABE≌△ACF(ASA),
    ∴AE=AF,
    又∵∠EAF=60°,
    ∴△AEF是等边三角形,
    ∴∠AEF=60°,
    由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,
    ∴60°+∠CEF=60°+23°,
    解得∠CEF=23°.
    故答案为23°.
    本题考查了菱形的性质和全等三角形的判定,熟练掌握全等三角形的判定方法,结合等边三角形性质和外角定义是解决本题的关键因素.
    三、解答题(本大题共5个小题,共48分)
    14、(1)A总分为86分,B总分为82分,C总分为81分,D总分为82分;(2)见详解
    【解析】
    (1)求四位应聘者总分只需将各部分分数按比例相加即可;
    (2)根据方差的意义分析即可.
    【详解】
    解:(1)应聘者A总分为85×50%+85×30%+90×20%=86分;
    应聘者B总分为85×50%+85×30%+70×20%=82分;
    应聘者C总分为80×50%+90×30%+70×20%=81分;
    应聘者D总分为90×50%+90×30%+50×20%=82分;
    (2)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.
    本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    15、(1)(﹣2,0);(2)y=2x+1;(2)y=2x+2
    【解析】
    (1)由点N(0,1),得出ON=1,再由ON=2OM,求得OM=2,从而得出点M的坐标;
    (2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;
    (2)根据题意求得A的纵坐标,代入(2)求得的解析式建立方程,求得答案即可.
    【详解】
    (1)∵N(0,1),ON=2OM,∴OM=2,∴M(﹣2,0).
    故答案为:(﹣2,0);
    (2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,1)分别代入上式,得:,解得:k=2,b=1,∴直线MN的函数解析式为:y=2x+1.
    (1)把x=﹣1代入y=2x+1,得:y=2×(﹣1)+1=2,即点A(﹣1,2),所以点C(0,2),∴由平移后两直线的k相同可得:平移后的直线为y=2x+2.
    本题考查了待定系数法求函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是本题的关键.
    16、(1)详见解析;(2)当∠BAC=150°时,四边形ADEF是矩形;(3)∠BAC=60°时,这样的平行四边形ADEF不存在.
    【解析】
    (1)根据等边三角形的性质得出AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,求出∠DBE=∠ABC,根据SAS推出△DBE≌△ABC,根据全等得出DE=AC,求出DE=AF,同理AD=EF,根据平行四边形的判定推出即可;
    (2)当AB=AC时,四边形ADEF是菱形,根据菱形的判定推出即可;当∠BAC=150°时,四边形ADEF是矩形,求出∠DAF=90°,根据矩形的判定推出即可;
    (3)这样的平行四边形ADEF不总是存在,当∠BAC=60°时,此时四边形ADEF就不存在.
    【详解】
    (1)证明:∵△ABD、△BCE和△ACF是等边三角形,
    ∴AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,
    ∴∠DBE=∠ABC=60°﹣∠EBA,
    在△DBE和△ABC中

    ∴△DBE≌△ABC,
    ∴DE=AC,
    ∵AC=AF,
    ∴DE=AF,
    同理AD=EF,
    ∴四边形ADEF是平行四边形;
    (2)解:当∠BAC=150°时,四边形ADEF是矩形,
    理由是:∵△ABD和△ACF是等边三角形,
    ∴∠DAB=∠FAC=60°,
    ∵∠BAC=150°,
    ∴∠DAF=90°,
    ∵四边形ADEF是平行四边形,
    ∴四边形ADEF是矩形;
    (3)解:这样的平行四边形ADEF不总是存在,
    理由是:当∠BAC=60°时,∠DAF=180°,
    此时点D、A、F在同一条直线上,此时四边形ADEF就不存在.
    本题考查了菱形的判定,矩形的判定,平行四边形的判定,等边三角形的性质,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,难度适中.
    17、见解析
    【解析】
    首先利用中位线定理证得CG∥BD,CG=BD,然后根据四边形ABCD是菱形得到AC⊥BD,DE=BD,从而得到∠DEC=90°,CG=DE,即可得到四边形ECGD是矩形.
    【详解】
    证明:∵CF=BC,
    ∴C点是BF中点,
    ∵点G是DF中点,
    ∴CG是△DBF中位线,
    ∴CG∥BD,CG=BD,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,DE=BD,
    ∴∠DEC=90°,CG=DE,
    ∴四边形ECGD是矩形.
    本题考查了矩形的判定、菱形的性质及三角形的中位线定理,解题的关键是牢记矩形的判定方法,难度不大.
    18、(1) ;(2)证明见解析.
    【解析】
    (1)根据菱形的性质和垂线的性质可得∠ABD=30°,∠DAE=30°,然后再利用三角函数及勾股定理在Rt△ABF中,求得AF,在Rt△AFG中,求得FG和AG,再运用三角形的面积公式求得四边形ABFG的面积;
    (2)设菱形的边长为a,根据(1)中的结论在Rt△ABF、Rt△AFG、Rt△ADE 中分别求得BF、FG、AE,然后即可得到结论.
    【详解】
    解:(1)∵四边形ABCD是菱形,
    ∴AB∥CD,BD平分∠ABC,
    又∵AE⊥CD,∠ABC=60°,
    ∴∠BAE=∠DEA=90°,∠ABD=30°,
    ∴∠DAE=30°,
    在Rt△ABF中,tan30°=,即,解得AF=,
    ∵FG⊥AD,
    ∴∠AGF=90°,
    在Rt△AFG中,FG=AF=,
    ∴AG==1.
    所以四边形ABFG的面积=S△ABF+S△AGF=;
    (2)设菱形的边长为a,则在Rt△ABF中,BF=,AF=,
    在Rt△AFG中,FG=AF=,
    在Rt△ADE中,AE=,
    ∴AE+FG=,
    ∴BF=AE+FG.
    本题主要考查了菱形的性质、勾股定理、三角形的面积公式、利用三角函数值解直角三角形等知识,熟练掌握基础知识是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、乙.
    【解析】
    试题解析:∵S甲 2=17,S乙 2=1,1<17,
    ∴成绩比较稳定的是乙.
    考点:方差.
    20、50°
    【解析】
    先根据平行线的性质以及角平分线的定义,得到∠AFE的度数,再根据平行线的性质,即可得到∠A的度数.
    【详解】
    ∵CD∥EF,∠C=∠CFE=25°.
    ∵FC平分∠AFE,∴∠AFE=2∠CFE=50°.
    又∵AB∥EF,∴∠A=∠AFE=50°.
    故答案为50°.
    本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    21、1
    【解析】
    试题分析:根据勾股定理得到AE==1,由平行线等分线段定理得到AE=BE=1,根据平移的性质即可得到结论.∵∠C=90°,AD=DC=4,DE=3, ∴AE==1, ∵DE∥BC, ∴AE=BE=1,
    ∴当点D落在BC上时,平移的距离为BE=1.
    考点:平移的性质
    22、0,2
    【解析】
    求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
    【详解】
    解:移项得,﹣2x﹣3x>﹣6﹣4,
    合并同类项得,﹣5x>﹣20,
    系数化为2得,x<2.
    故其非负整数解为:0,2.
    本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
    23、1
    【解析】
    由平行四边形的性质可得S△EHB=S△EIH,S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,由面积和差关系可求四边形IJKL的面积.
    【详解】
    解:∵AB∥IL,IJ∥BC,
    ∴四边形EIHB是平行四边形,
    ∴S△EHB=S△EIH,
    同理可得:S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,
    ∴四边形IJKL面积=四边形EFGH面积−(四边形ABCD面积−四边形EFGH面积)=11−(18−11)=1,
    故答案为:1.
    本题考查了平行四边形的判定与性质,由平行四边形的性质得出S△EHB=S△EIH是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、见解析.
    【解析】
    根据三角形中位线定理得到,EF∥AC,,GH∥AC,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明结论.
    【详解】
    证明:、分别是、的中点
    是的中位线

    同理:

    四边形是平行四边形
    本题考查的是三角形中位线定理、平行四边形的判定,掌握三角形中位线定理是解题的关键.
    25、(1)每天可销售450件商品,商场获得的日盈利是6750元;(2)每件商品售价为60或1元时,商场日盈利达到100元.
    【解析】
    (1)首先求出每天可销售商品数量,然后可求出日盈利;
    (2)设商场日盈利达到100元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.
    【详解】
    (1)当每件商品售价为55元时,比每件商品售价50元高出5元,
    即55﹣50=5(元),
    则每天可销售商品450件,即500﹣5×10=450(件),
    商场可获日盈利为(55﹣40)×450=6750(元).
    答:每天可销售450件商品,商场获得的日盈利是6750元;
    (2)设商场日盈利达到100元时,每件商品售价为x元.
    则每件商品比50元高出(x﹣50)元,每件可盈利(x﹣40)元,
    每日销售商品为500﹣10×(x﹣50)=1000﹣10x(件).
    依题意得方程(1000﹣10x)(x﹣40)=100,
    整理,得x2﹣140x+410=0,
    解得x=60或1.
    答:每件商品售价为60或1元时,商场日盈利达到100元.
    26、(1)证明见详解;(2)45°;(3)BC+BE=2BG,理由见详解.
    【解析】
    (1)作FH⊥BC于H,由等腰三角形的性质得出∠ABD=∠CBD,BD⊥AC,由角平分线的性质得出EF=HF,∠BEF=90°=∠BHF,证明△BEF≌△BHF,得出BE=BH,证出△BCE是等腰直角三角形,得出∠BCE=45°,BE=EC=BH,证出△CFH是等腰直角三角形,得出CH=HF=EF,即可得出结论;
    (2)由BD平分∠ABC,得到∠ABD的度数,然后求得∠BFE,由直角三角形斜边上的中线定理,可得DE=CD,可得∠DEF=∠DCF=22.5°,然后根据外角定理,即可求得∠BDE;
    (3)由(2)知,∠ADE=∠ABC=45°,由等腰三角形的性质得出∠A=∠ACB=67.5°,由三角形内角和定理得出∠AED=180°-∠A-∠ADE=67.5°,得出∠AED=∠A,证出DA=DE,由等腰三角形的性质得出AG=EG,即可得出结论.
    【详解】
    (1)证明:作FH⊥BC于H,如图所示:
    则∠BHF=90°,
    ∵AB=BC,BD是AC边上的高,
    ∴∠ABD=∠CBD,BD⊥AC,
    ∵CE是AB边上的高,
    ∴CE⊥AB,
    ∴EF=HF,∠BEF=90°=∠BHF,
    在△BEF和△BHF中,
    ∴△BEF≌△BHF(AAS),
    ∴BE=BH,
    ∵∠ABC=45°,
    ∴△BCE是等腰直角三角形,
    ∴∠BCE=45°,BE=EC=BH,
    ∴△CFH是等腰直角三角形,
    ∴CH=HF=EF,
    ∴EC+EF=BH+CH=BC;
    (2)解:如图,
    由(1)知,BD平分∠ABC,∠ABC=45°,
    ∴∠ABF=22.5°,
    ∴∠BFE=90°-22.5°=67.5°,
    ∵AB=BC,∠ABC=45°,
    ∴∠A=,
    在直角三角形ACE中,D是AC中点,
    ∴DE=CD=AD,
    ∴∠DEF=∠DCF=90°-67.5°=22.5°,
    ∴∠BDE=∠BFE-∠DEF=67.5°-22.5°=45°;
    (3)解:BC+BE=2BG,理由如下:如图,
    由(2)得:∠DEF=∠DCF=22.5°
    ∴∠ADE=∠ABC=45°,
    ∵AB=BC,∠ABC=45°,
    ∴∠A=∠ACB=67.5°,
    ∴∠AED=180°-∠A-∠ADE=67.5°,
    ∴∠AED=∠A,
    ∴DA=DE,
    ∵DG⊥AE,
    ∴AG=EG,
    ∵BC=AB=BE+AE=BE+2EG=BG+EG,EG=BG-BE,
    ∴BC=BG+BG-BE,
    ∴BC+BE=2BG.
    本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质与判定、等腰直角三角形的判定与性质、角平分线的性质、直角三角形斜边上的中线等;本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等和等腰直角三角形是解题的关键.
    题号





    总分
    得分
    项目
    得分
    应聘者
    专业知识
    英语水平
    参加社会实践与社团活动等
    A
    85
    85
    90
    B
    85
    85
    70
    C
    80
    90
    70
    D
    80
    90
    50
    相关试卷

    2024年陕西省安康市名校数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年陕西省安康市名校数学九年级第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广西梧州市九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024年广西梧州市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年甘肃省陇南市九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年甘肃省陇南市九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map