![2024年浙江省湖州市南浔区数学九上开学学业水平测试试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16219764/0-1728112561588/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年浙江省湖州市南浔区数学九上开学学业水平测试试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16219764/0-1728112561670/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年浙江省湖州市南浔区数学九上开学学业水平测试试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16219764/0-1728112561695/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年浙江省湖州市南浔区数学九上开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,平行四边形中,,,,动点从点出发,沿运动至点停止,设运动的路程为,的面积为,则与的函数关系用图象表示正确的是( )
A.B.
C.D.
2、(4分)龙华地铁4号线北延计划如期开工,由清湖站开始,到达观澜的牛湖站,长约10.770公里,其中需修建的高架线长1700m.在修建完400m后,为了更快更好服务市民,采用新技术,工效比原来提升了25%.结果比原计划提前4天完成高架线的修建任务.设原计划每天修建xm,依题意列方程得( )
A.B.
C.D.
3、(4分)在平行四边形中,已知,,则它的周长是( )
A.8B.10C.12D.16
4、(4分)多项式2m+4与多项式m2+4m+4的公因式是( )
A.m+2B.m﹣2C.m+4D.m﹣4
5、(4分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1B.C.-1D.+1
6、(4分)小勇投标训练4次的成绩分别是(单位:环)9,9,x,1.已知这组数据的众数和平均数相等,则这组数据中x是( )
A.7 B.1 C.9 D.10
7、(4分)有一组数据7、11、12、7、7、8、11,下列说法错误的是( )
A.中位数是7B.平均数是9C.众数是7D.极差为5
8、(4分)用配方法解方程配方正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.
10、(4分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=______.
11、(4分)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则这两人10次射击命中环数的方差____.(填“>”、“<”或“=”)
12、(4分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.
13、(4分)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,ABCD中,的角平分线交AD于点E,的角平分线交 于点,,,=50°.
(1)求的度数;
(2)求ABCD的周长.
15、(8分)在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.
(1)这次调查获取的样本容量是 .(直接写出结果)
(2)这次调查获取的样本数据的众数是 ,中位数是 .(直接写出结果)
(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.
16、(8分)在平面直角坐标系中,直线l经过点A(﹣1,﹣4)和B(1,0),求直线l的函数表达式.
17、(10分)如图,已知直线过点,.
(1)求直线的解析式;
(2)若直线与轴交于点,且与直线交于点.
①求的面积;
②在直线上是否存在点,使的面积是面积的2倍,如果存在,求出点的坐标;如果不存在,请说明理由.
18、(10分)已知非零实数满足,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知y与x+1成正比例,且x=1时,y=2.则x=-1时,y的值是______.
20、(4分)已知,,则代数式的值为________.
21、(4分)不等式2x+8≥3(x+2)的解集为_____.
22、(4分)矩形、菱形和正方形的对角线都具有的性质是_____.
23、(4分)如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为 ,点An的坐标为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?
25、(10分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE.、DE分别交AB于点O、F,且OP=OF,则BP的长为______.
26、(12分)已知,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
当点E在BC上运动时,三角形的面积不断增大,当点E在DC上运动时,三角形的面积不变,当点E在AD上运动时三角形的面积不等减小,然后计算出三角形的最大面积即可得出答案.
【详解】
当点E在BC上运动时,三角形的面积不断增大,最大面积= ×3××4=3;
当点E在DC上运动时,三角形的面积为定值3.
当点E在AD上运动时三角形的面不断减小,当点E与点A重合时,面积为0.
故选:D.
此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.
2、C
【解析】
设原计划每天修建xm,则实际每天修建(1+25%)xm,根据题意可得,增加工作效率之后比原计划提前4天完成任务,据此列方程.
【详解】
解:设原计划每天修建xm,则实际每天修建(1+25%)xm,由题意得:
故选C.
3、D
【解析】
根据平行四边形的性质可得AB=CD=5,BC=AD=3,即可得周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD=5,BC=AD=3,
∴它的周长为:5×2+3×2=16,
故答案为:D
此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.
4、A
【解析】
根据公因式定义,对每个多项式整理然后即可选出有公因式的项.
【详解】
2m+4=2(m+2),
m2+4m+4=(m+2)2,
∴多项式2m+4与多项式m2+4m+4的公因式是(m+2),
故选:A.
本题考查了公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.
5、C
【解析】
【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
【详解】∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴,
∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
∴,
∴,
故选C.
【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
6、C
【解析】【分析】根据题意可知,x是9,不可能是1.
【详解】因为这组数据的众数和平均数相等,则这组数据中x是9.
故选:C
【点睛】本题考核知识点:众数和平均数.解题关键点:理解众数和平均数的定义.
7、A
【解析】
根据中位数.平均数.极差.众数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:,
则中位数为8,平均数为,众数为7,极差为,
故选A.
本题考查了加权平均数,中位数,众数,极差,熟练掌握概念是解题的关键.
8、A
【解析】
本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.
【详解】
解:,
,
∴,
.
故选:.
此题考查配方法的一般步骤:
①把常数项移到等号的右边;
②把二次项的系数化为1;
③等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、,
【解析】
根据等边三角形的性质求出正△A1B1C1的面积,根据三角形中位线定理得到,根据相似三角形的性质计算即可.
【详解】
正△的边长,
正△的面积,
点、、分别为△的三边中点,
,,,
△△,相似比为,
△与△的面积比为,
正△的面积为,
则第个正△的面积为,
故答案为:;.
本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
10、4或1
【解析】
分别利用,当MN∥BC时,以及当∠ANM=∠B时,分别得出相似三角形,再利用相似三角形的性质得出答案.
【详解】
如图1,当MN∥BC时,
则△AMN∽△ABC,
故,
则,
解得:MN=4,
如图2所示:当∠ANM=∠B时,
又∵∠A=∠A,
∴△ANM∽△ABC,
∴,
即,
解得:MN=1,
故答案为:4或1.
此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.
11、>
【解析】
先分别求出各自的平均数,再根据方差公式求出方差,即可作出比较.
【详解】
甲的平均数
则
乙的平均数
则
所以
本题属于基础应用题,只需学生熟练掌握方差的求法,即可完成.
12、2.
【解析】
试题分析:根据菱形的面积等于对角线乘积的一半解答.
试题解析:∵AC=4cm,BD=8cm,
∴菱形的面积=×4×8=2cm1.
考点:菱形的性质.
13、2
【解析】
由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.
【详解】
∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,
∴DF为三角形ABC的中位线,
∴DE∥BC,DF=BC,
又∠ADF=90°,
∴∠C=∠ADF=90°,
又BE⊥DE,DE⊥AC,
∴∠CDE=∠E=90°,
∴四边形BCDE为矩形,
∵BC=2,∴DF= BC=1,
在Rt△ADF中,∠A=30°,DF=1,
∴tan30°= ,即AD= ,
∴CD=AD=,
则矩形BCDE的面积S=CD⋅BC=2.
故答案为2
此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形
三、解答题(本大题共5个小题,共48分)
14、(1);(2)1.
【解析】
(1)根据平行四边形的对角相等得出∠ADC=∠ABC=50°,再根据角平分线定义即可求出∠FDC的度数;
(2)根据平行四边形的对边平行得出AE∥BC,利用平行线的性质以及角平分线定义得出∠ABE=∠AEB,由等角对等边得出AE=AB=5,那么AD=AE+DE=8,进而得到▱ABCD的周长.
【详解】
解:(1)∵▱ABCD中,∠ABC=50°,
∴∠ADC=∠ABC=50°,
∵DF平分∠ADC,
(2)四边形ABCD是平行四边形,
∴AE∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AE=AB=5,
∵DE=3,
∴AD=AE+DE=8,
∴▱ABCD的周长=2(AB+AD)=2(5+8)=1.
本题考查了平行四边形的性质,角平分线定义,等腰三角形的判定与性质,难度适中.
15、(1)40;(2)30,50;(3)50500元
【解析】
(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;
(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;
(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.
【详解】
解:(1)样本容量是:6+12+10+8+4=40,
(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50;
(3)×1000=50500(元),
答:该校本学期计划购买课外书的总花费是50500元.
故答案为(1)40;(2)30,50;(3)50500元.
本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
16、.
【解析】
根据待定系数法,可得一次函数解析式.
【详解】
解:设直线的表达式为,
依题意,得
解得:.
所以直线的表达式为.
本题考查了待定系数法求一次函数的解析式,熟练掌握待定系数法是解题关键.
17、(1);(2)6;(3)或
【解析】
(1)根据点A、D的坐标利用待定系数法即可求出直线l的函数解析式;
(2)令y=-x+4=0求出x值,即可得出点B的坐标,联立两直线解析式成方程组,解方程组即可得出点C的坐标,再根据三角形的面积即可得出结论;
(3)假设存在,设,列出的面积公式求出m,再根据一次函数图象上点的坐标特征即可求出点P的坐标.
【详解】
解(1)将,,代入
得:解得:
∴直线的解析式为:
(2)联立: ∴
∴
当y=-x+4=0时,x=4
∴
由题意得:
∴
(3)设,由题意得:
∴
∴
∴或
∴或
∴或
此题考查一次函数中的直线位置关系,解题关键在于将已知点代入解析式
18、1
【解析】
由题设知a≥3,化简原式得,根据非负数的性质先求出a,b的值,从而求得a+b的值.
【详解】
解:∵a≥3,
∴原等式可化为,
∴b+2=0且(a-3)b2=0,
∴a=3,b=-2,
∴a+b=1.
本题考查了二次根式有意义的条件及非负数的性质,几个非负数的和为零,则每一个数都为零.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
设y=k(x+1),把x=1,y=2代入,求的k,确定x,y的关系式,然后把x=-1,代入解析式求对应的函数值即可.
【详解】
解:∵y与x+1成正比例,
∴设y=k(x+1),
∵x=1时,y=2,
∴2=k×2,即k=1,
所以y=x+1.
则当x=-1时,y=-1+1=2.
故答案为2.
本题考查了正比例函数关系式为:y=kx(k≠2)),只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.
20、
【解析】
原式通分并利用同分母分式的加法法则计算得到最简结果,将a与b的值代入计算即可求出值.
【详解】
原式=,
当a=+1,b=-1时,原式=,
故答案为:2
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
21、x≤2
【解析】
根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.
【详解】
去括号,得:2x+8≥3x+6,
移项,得:2x-3x≥6-8,
合并同类项,得:-x≥-2,
系数化为1,得:x≤2,
故答案为x≤2
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
22、对角线互相平分
【解析】
先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.
【详解】
解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.
故答案为对角线互相平分.
本题主要考查了矩形、菱形、正方形的性质,解题的关键是熟知三者对角线的性质.
23、A4(7,8);An(2n-1-1,2n-1).
【解析】
∵点B1的坐标为(1,1),点B2的坐标为(3,2)
∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),
∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.
∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;
A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;
A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,
A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).
∴An的纵坐标是:2n-1,横坐标是:2n-1-1,
即点An的坐标为(2n-1-1,2n-1).
故答案为(7,8);(2n-1-1,2n-1).
二、解答题(本大题共3个小题,共30分)
24、14cm1
【解析】
连接AC,利用勾股定理求出AC的长,在△ABC中,判断它的形状,并求出它的面积,最后求出四边形ABCD的面积.
【详解】
解:连接AC,
∵AD=4cm,CD=3cm,∠ADC=90°,
∴AC===5(cm)
∴S△ACD=CD•AD=6(cm1).
在△ABC中,∵51+111=131即AC1+BC1=AB1,
∴△ABC为直角三角形,即∠ACB=90°,
∴S△ABC=AC•BC=30(cm1).
∴S四边形ABCD=S△ABC-S△ACD
=30-6=14(cm1).
答:四边形ABCD的面积为14cm1.
本题考查了勾股定理、勾股定理的逆定理及三角形的面积公式.掌握勾股定理及其逆定理,连接AC,说明△ABC是直角三角形是解决本题的关键.
25、
【解析】
根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP,根据全等三角形的性质可得出OE=OB、EF=BP,设BF=EP=CP=x,则AF=4-x,BP=3-x=EF,DF=DE-EF=4-(3-x)=x+1,依据Rt△ADF中,AF2+AD2=DF2,求出x的值,即可得出BP的长.
【详解】
解:根据折叠可知:△DCP≌△DEP,
∴DC=DE=4,CP=EP.
在△OEF和△OBP中,,
∴△OEF≌△OBP(AAS),
∴OE=OB,EF=BP,
∴BF=EP=CP,
设BF=EP=CP=x,则AF=4-x,BP=3-x=EF,DF=DE-EF=4-(3-x)=x+1,
∵∠A=90°,
∴Rt△ADF中,AF2+AD2=DF2,
即(4-x)2+32=(1+x)2,
解得:x=,
∴BP=3-x=3-=,
故答案为:.
本题考查了翻折变换的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用,熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.
26、
【解析】
先计算出a+b,b-a以及ab的值,再把所求代数式变形为,然后代值计算即可.
【详解】
解:∵,
∴,
∴原式=.
本题二次根式的化简求值,通过先计算a+b,b-a以及ab的值,变形所求代数式,从而使计算变得简便.
题号
一
二
三
四
五
总分
得分
批阅人
2024年西藏达孜中学数学九上开学学业水平测试试题【含答案】: 这是一份2024年西藏达孜中学数学九上开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年宁夏吴忠市名校九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024年宁夏吴忠市名校九上数学开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年那曲市数学九上开学学业水平测试试题【含答案】: 这是一份2024年那曲市数学九上开学学业水平测试试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。