2024年浙江东阳数学九上开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:
关于这组数据,下列说法正确的是( )
A.众数是2册B.中位数是2册
C.平均数是3册D.方差是1.5
2、(4分)如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为( )
A.40°B.50°C.60°D.70°
3、(4分)若一次函数的图象经过两点和,则下列说法正确的是( )
A.B.C.D.
4、(4分)已知关于的一元二次方程的一个根是0,则的值为( )
A.B.C.D.
5、(4分)如图,已知正方形ABCD边长为1,,,则有下列结论:①;②点C到EF的距离是2-1;③的周长为2;④,其中正确的结论有( )
A.4个B.3个C.2个D.1个
6、(4分)下列各点中,在函数y=-图象上的是( )
A.B.C.D.
7、(4分)若正比例函数y=kx的图象经过点(1,2),则k的值为
A.B.-2C.D.2
8、(4分)下列各组数中,能构成直角三角形三边长的是( )
A.4、5、6B.5,12,23C.6,8,11D.1,1,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为分,分,,.那么成绩较为整齐的是______班.
10、(4分)如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为______,点的坐标为______.
11、(4分)如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如图的方式放置.点A1,A2,A3,……和点C1,C2,C3……分别在直线y=x +1和x轴上,则点A6的坐标是____________.
12、(4分)如图,E是▱ABCD边BC上一点,连结AE,并延长AE与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D= ____________°
13、(4分)在菱形ABCD中,M是AD的中点,AB=4,N是对角线AC上一动点,△DMN 的周长最小是2+,则BD的长为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,在第四象限内的矩形OABC,两边在坐标轴上,一个顶点在一次函数y=0.5x﹣3的图象上,当点A从左向右移动时,矩形的周长与面积也随之发生变化,设线段OA的长为m,矩形的周长为C,面积为S.
(1)试分别写出C、S与m的函数解析式,它们是否为一次函数?
(2)能否求出当m取何值时,矩形的周长最大?为什么?
15、(8分)如图,矩形纸片ABCD中,AB=8,AD=6,折叠纸片使AD边落在对角线BD上,点A落在点A′处,折痕为DG,求AG的长.
16、(8分)(1)如图(1),已知:正方形ABCD的对角线交于点O,E是AC上的一动点,过点A作AG⊥BE于G,交BD于F.求证:OE=OF.
(2)在(1)的条件下,若E点在AC的延长线上,以上结论是否成立,为什么?
17、(10分)如图,一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)
18、(10分)(知识链接)连结三角形两边中点的线段,叫做三角形的中位线.
(动手操作)小明同学在探究证明中位线性质定理时,是沿着中位线将三角形剪开然后将它们无缝隙、无重叠的拼在一起构成平行四边形,从而得出:三角形中位线平行于第三边且等于第三边的一半.
(性质证明)小明为证明定理,他想利用三角形全等、平行四边形的性质来证明.请你帮他完成解题过程(要求:画出图形,根据图形写出已知、求证和证明过程).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若的整数部分是a,小数部分是b,则______.
20、(4分)如图,在平面直角坐标系中,点A1,A2,A3…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果点A1(1,1),那么点A2019的纵坐标是_____.
21、(4分)4是_____的算术平方根.
22、(4分)如图,在四边形中,,,,,且,则______度.
23、(4分)将直线向上平移个单位,得到直线_______。
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.
25、(10分)甲、乙两人利用不同的交通工具,沿同一路线分别从A、B两地同时出发匀速前往C地(B在A、C两地的途中).设甲、乙两车距A地的路程分别为y甲、y乙(千米),行驶的时间为x(小时),y甲、y乙与x之间的函数图象如图所示.
(1)直接写出y甲、y乙与x之间的函数表达式;
(2)如图,过点(1,0)作x轴的垂线,分别交y甲、y乙的图象于点M,N.求线段MN的长,并解释线段MN的实际意义;
(3)在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,求x的取值范围.
26、(12分)已知一次函数.
(1)若这个函数的图象经过原点,求a的值.
(2)若这个函数的图象经过一、三、四象限,求a的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据方差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.
【详解】
解:A、众数是3册,结论错误,故A不符合题意;
B、中位数是2册,结论正确,故B符合题意;
C、平均数是(0×10+1×20+2×30+3×40)÷100=2册,结论错误,故C不符合题意;
D、方差=×[10×(0-2)2+20×(1-2)2+30×(2-2)2+40×(3-2)2]=1,结论错误,故D不符合题意.
故选:B.
本题考查方差、平均数、中位数及众数,属于基础题,掌握各部分的定义及计算方法是解题的关键.
2、D
【解析】
根据翻折不变性即可解决问题;
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1=∠FEC,
由翻折不变性可知:∠FEA=∠FEC,
∵∠1=70°,
∴∠FEA=70°,
故选D.
本题考查了矩形的性质、平行线的性质、翻折变换等知识,解题的关键是灵活运用所学知识解决问题.
3、A
【解析】
根据一次函数的增减性求解即可.
【详解】
∵2>0,
∴y随x的增大而增大,
∵-1<2,
∴.
故选A.
本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
4、C
【解析】
根据一元二次方程的解的定义、一元二次方程的定义求解,把x=0代入一元二次方程即可得出m的值.
【详解】
解:把x=0代入方程(m﹣2)x2+3x+m2﹣4=0,
得m2﹣4=0,
解得:m=±2,
∵m﹣2≠0,
∴m=﹣2,
故选:C.
本题逆用一元二次方程解的定义易得出m的值,但不能忽视一元二次方程成立的条件m﹣2≠0,因此在解题时要重视解题思路的逆向分析.
5、C
【解析】
先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连接EF、AC,它们相交于点H,如图,利用Rt△ABE≌Rt△ADF得到BE=DF,则CE=CF,接着判断AC垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1-x,利用等腰直角三角形的性质得到2x=(1-x),解方程,则可对②进行判断.
【详解】
解:∵四边形ABCD为正方形,
∴AB=AD,∠BAD=∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴∠1=∠2,
∵∠EAF=45°,
∴∠1=∠2=∠22.5°,所以①正确;
连接EF、AC,它们相交于点H,如图,
∵Rt△ABE≌Rt△ADF,
∴BE=DF,
而BC=DC,
∴CE=CF,
∵AE=AF,
∴AC垂直平分EF,AH平分∠EAF,
∴EB=EH,FD=FH,
∴BE+DF=EH+HF=EF,所以④错误;
∴△ECF的周长=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正确;
设BE=x,则EF=2x,CE=1-x,
∵△CEF为等腰直角三角形,
∴EF=CE,即2x=(1-x),解得x=-1,
∴BE=-1,
Rt△ECF中,EH=FH,
∴CH=EF=EH=BE=-1,
∵CH⊥EF,
∴点C到EF的距离是-1,
所以②错误;
本题正确的有:①③;
故选:C.
本题考查四边形的综合题:熟练掌握正方形的性质和角平分线的性质定理.解题的关键是证明AC垂直平分EF.
6、C
【解析】
把各点代入解析式即可判断.
【详解】
A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;
B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;
C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;
D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.
故选C.
此题主要考查反比例函数的图像,解题的关键是将各点代入解析式.
7、D
【解析】
∵正比例函数y=kx的图象经过点(1,1),
∴把点(1,1)代入已知函数解析式,得k=1.故选D.
8、D
【解析】
试题分析:A、42+52≠62,不能构成直角三角形,故不符合题意;
B、52+122≠232,不能构成直角三角形,故不符合题意;
C、62+82≠112,不能构成直角三角形,故不符合题意;
D、12+12=()2,能构成直角三角形,故符合题意.
故选D.
考点: 勾股定理的逆定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、乙
【解析】
根据平均数与方差的实际意义即可解答.
【详解】
解:已知两班平均分相同,
且>,
故应该选择方差较小的,
即乙班.
本题考查方差的实际运用,在平均数相同时方差较小的结果稳定.
10、 (16,32) (−21009,−21010).
【解析】
根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8、A9等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.
【详解】
当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=−x=2时,x=−2,
∴点A2的坐标为(−2,2);
同理可得:A3(−2,−4),A4(4,−4),A5(4,8),A6(−8,8),A7(−8,−16),A8(16,−16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),
A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数).
∵2019=504×4+3,
∴点A2019的坐标为(−2504×2+1,−2504×2+2),即(−21009,−21010).
故答案为(16,32), (−21009,−21010).
此题主要考查一次函数与几何规律探索,解题的关键是根据题意得到坐标的变化规律.
11、(31,32)
【解析】
分析:
由题意结合图形可知,从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,由此可得点An的纵坐标是,根据点An在直线y=x+1上可得点An的横坐标为,由此即可求得A6的坐标了.
详解:
由题意结合图形可知:从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,
∵点An的纵坐标是第n个正方形的边长,
∴点An的纵坐标为,
又∵点An在直线y=x+1上,
∴点An的横坐标为,
∴点A6的横坐标为:,点A6的纵坐标为:,
即点A6的坐标为(31,32).
故答案为:(31,32).
点睛:读懂题意,“弄清第n个正方形的边长是,点An的纵坐标与第n个正方形边长间的关系”是解答本题的关键.
12、1
【解析】
利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=1°,利用平行四边形对角相等得出即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠F=∠BAE=50°,.
∵AB=AE,
∴∠B=∠AEB=1°,
∴∠D=∠B=1°.
故答案是:1.
此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
13、4
【解析】
根据题意,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,由DM=,则BM=,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD为等边三角形,即可得到BD的长度.
【详解】
解:如图:连接BD,BM,则AC垂直平分BD,则BN=DN,
当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,
∵AD=AB=4,M是AD的中点,
∴AM=DM=,
∴BM=,
∵,
∴△ABM是直角三角形,即∠AMB=90°;
∵BM是△ABD的中线,
∴△ABD是等边三角形,
∴BD=AB=AD=4.
故答案为:4.
本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD是等边三角形.
三、解答题(本大题共5个小题,共48分)
14、(1)C=m+6,面积S=﹣0.5m2+3m, C是m的一次函数,S不是m的一次函数;(2)不能求出当m取何值时,矩形的周长最大.
【解析】
(1)由题意可知A(m,0),B(m,0.5m﹣3),从而得AB=3﹣0.5m,继而根据矩形的周长公式和面积公式进行求解可得相应的函数解析式,然后再根据一次函数的概念进行判断即可;
(2)先确定出m的取值范围为0<m<6,根据(1)中的周长,可知m越大周长越大,但m没有是大值,因此不能求出当m取何值时,矩形的周长最大.
【详解】
(1)由题意,可知A(m,0),B(m,0.5m﹣3),
则AB=|0.5m﹣3|=3﹣0.5m,
∴矩形的周长C=2(OA+AB)=2(m+3﹣0.5m)=m+6,
面积S=OA•AB=m(3﹣0.5m)=﹣0.5m2+3m,
∴C是m的一次函数,S不是m的一次函数;
(2)不能求出当m取何值时,矩形的周长最大.
∵矩形OABC在第四象限内,
∴,
∴0<m<6,
又C=m+6,
∴不能求出当m取何值时,矩形的周长最大.
本题考查了一次函数的应用——几何问题,熟练掌握矩形的周长公式以及面积公式是解题的关键.
15、AG=1.
【解析】
由折叠的性质得∠BA′G=∠DA′G=∠A=90°,A′D=6,由勾股定理得BD=10,得出A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得出方程,解方程即可得出结果.
【详解】
∵矩形ABCD折叠后AD边落在BD上,
∴∠BA′G=∠DA′G=∠A=90°,
∵AB=8,AD=6,
∴A′D=6,BD===10,
∴A′B=4,
设AG=A′G=x,则GB=8-x,
由勾股定理得:x2+42=(8-x)2,解得:x=1,
∴AG=1.
本题主要考查折叠的性质、矩形的性质、勾股定理,熟练掌握折叠的性质、勾股定理是解题的关键.
16、(1)详见解析;(2)以上结论仍然成立.
【解析】
(1)利用正方形的性质得OA=OB,∠AOB=∠BOC=90°,则利用等角的余角相等得到∠GAE=∠OBE,则可根据”ASA“判断△AOF≌△BOE,从而得到OF=OE;
(2)同样方法证明△AOF≌△BOE,仍然得到OF=OE.
【详解】
解:(1)证明:∵四边形ABCD为正方形,
∴OA=OB,∠AOB=∠BOC=90°,
∵AG⊥BE于点G,
∴∠AGE=90°,
∴∠GAE=∠OBE,
在△AOF和△BOE中,,
∴△AOF≌△BOE(ASA),
∴OF=OE;
(2)解:以上结论仍然成立.理由如下:
同样可证明△AOF≌△BOE(ASA),所以OF=OE.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
17、 (10+10)海里
【解析】
利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,如图,设BC=x海里,则AC=AB+BC=(20+x)海里.解△PBC,得出PC=BC=x海里,解Rt△APC,得出AC=PC•tan60°=x,根据AC不变列出方程x=20+x,解方程即可.
【详解】
如图,AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,设BC=x海里,则AC=AB+BC=(20+x)海里.
在△PBC中,∵∠BPC=45°,
∴△PBC为等腰直角三角形,
∴PC=BC=x海里,
在Rt△APC中,∵tan∠APC=,
∴AC=PC•tan60°=x,
∴x=20+x,
解得x=10+10,
则PC=(10+10)海里.
答:轮船航行途中与灯塔P的最短距离是(10+10)海里.
本题考查了解直角三角形的应用-方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.
18、见解析
【解析】
作出图形,然后写出已知、求证,延长DE到F,使DE=EF,证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,全等三角形对应角相等可得∠F=∠ADE,再求出BD=CF,根据内错角相等,两直线平行判断出AB∥CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质证明结论.
【详解】
解:已知:如图所示,在△ABC中,D、E分别是AB、AC的中点,
求证:DE=BC,DE∥BC,
证明:延长DE到F,使DE=EF,连接CF,
∵点E是AC的中点,
∴AE=CE,
在△ADE和△CEF中,
,
∴△ADE≌△CEF(SAS),
∴AD=CF,∠ADE=∠F,
∴AB∥CF,
∵点D是AB的中点,
∴AD=BD,
∴BD=CF,
∴BD∥CF,
∴四边形BCFD是平行四边形,
∴DF∥BC,DF=BC,
∴DE∥BC且DE=BC.
本题考查的是三角形中位线定理的证明、平行四边形的判定和性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
若的整数部分为a,小数部分为b,
∴a=1,b=,
∴a-b==1.
故答案为1.
20、
【解析】
设点A2,A3,A4…,A1坐标,结合函数解析式,寻找纵坐标规律,进而解题.
【详解】
∵A1(1,1)在直线y=x+b,
∴b=,
∴y=x+,
设A2(x2,y2),A3(x3,y3),A4(x4,y4),…,A1(x1,y1)
则有 y2=x2+,
y3=x3+,
…
y1=x1+.
又∵△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.
∴x2=2y1+y2,
x3=2y1+2y2+y3,
…
x1=2y1+2y2+2y3+…+2y2+y1.
将点坐标依次代入直线解析式得到:
y2=y1+1
y3=y1+y2+1= y2
y4= y3
…
y1=y2
又∵y1=1
∴y2= y3=()2
y4=()3
…
y1=()2
故答案为()2.
此题主要考查了 一次函数点坐标特点;等腰直角三角形斜边上高等于斜边长一半;找规律.
21、16.
【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
22、1
【解析】
根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.
【详解】
∵AB=2,BC=2,∠ABC=90°,
∴AC=,,∠BAC=45°,
∵12+(2)2=32,
∴∠DAC=90°,
∴∠BAD=90°+45°=1°,
故答案是:1.
考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
23、
【解析】
根据平移k不变,b值加减即可得出答案.
【详解】
平移后解析式为:y=2x−1+4=2x+3,
故答案为:y=2x+3
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
二、解答题(本大题共3个小题,共30分)
24、24
【解析】
试题分析:阴影部分的面积等于以AC、BC为直径的半圆的面积加上△ABC的面积减去以AB为直径的半圆的面积.
试题解析:根据Rt△ABC的勾股定理可得:AB=10,则S==24
考点:勾股定理
25、(1)y甲=10x;y乙=40x+10;(2)表示甲、乙两人出发1小时后,他们相距40千米;(3)在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,x的取值范围是1.5<x<4.5或5.2<x≤1.
【解析】
试题分析:(1)利用待定系数法即可求出y甲、y乙与x之间的函数表达式;
(2)把x=1代入(1)中的函数解析式,分别求出对应的y甲、y乙的值,则线段MN的长=y乙-y甲,进而解释线段MN的实际意义;
(3)分三种情况进行讨论:①0<x≤3;②3<x≤5;③5<x≤1.分别根据甲、乙两人距A地的路程差小于30千米列出不等式,解不等式即可.
试题解析:
(1)设y甲=kx,
把(3,180)代入,得3k=180,解得k=10,
则y甲=10x;
设y乙=mx+n,
把(0,10),(3,180)代入,
得 ,解得 ,
则y乙=40x+10;
(2)当x=1时,
y甲=10x=10,y乙=40x+10=100,
则MN=100﹣10=40(千米),
线段MN的实际意义:表示甲、乙两人出发1小时后,他们相距40千米;
(3)分三种情况:
①当0<x≤3时,
(40x+10)﹣10x<30,解得x>1.5;
②当3<x≤5时,
10x﹣(40x+10)<30,解得x<4.5;
③当5<x≤1时,
300﹣(40x+10)<30,解得x>5.2.
综上所述,在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,x的取值范围是1.5<x<4.5或5.2<x≤1.
26、(1);(2)
【解析】
(1)y=kx+b经过原点则b=0,据此求解;
(2)y=kx+b的图象经过一、三、四象限,k>0,b<0,据此列出不等式组求解即可.
【详解】
(1)由题意得, ,∴.
(2)由题意得
解得,
∴a的取值范围是.
考查了一次函数的性质,了解一次函数的性质是解答本题的关键。
题号
一
二
三
四
五
总分
得分
批阅人
册数
0
1
2
3
人数
10
20
30
40
2024年龙岩市五县九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年龙岩市五县九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省泗洪县九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年江苏省泗洪县九上数学开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省高邮市九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年江苏省高邮市九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。