|试卷下载
搜索
    上传资料 赚现金
    2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】01
    2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】02
    2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】

    展开
    这是一份2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)方程的解是
    A.B.C.或D.或
    2、(4分)如图,在矩形纸片中,,,将纸片折叠,使点落在边上的点处,折痕为,再将沿向右折叠,点落在点处,与交于点,则的面积为( )
    A.4B.6C.8D.10
    3、(4分)2022年将在北京---张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了滑雪选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:
    设两队队员身高的平均数依次为,,方差依次为,,则下列关系中完全正确的是( ).
    A.B.
    C.D.
    4、(4分)己知直角三角形一个锐角60°,斜边长为2,那么此直角三角形的周长是( )
    A.B.3C.+2D.+3
    5、(4分)某同学的身高为1.6m,某一时刻他在阳光下的影长为1.2m,与他相邻的一棵树的影长为3.6m,则这棵树的高度为( )
    A.5.3 mB.4.8 mC.4.0 mD.2.7 m
    6、(4分)若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
    A.m>﹣2B.m<﹣2
    C.m>2D.m<2
    7、(4分)如图,四边形ABCD是正方形,延长BA到点E,使BE=BD,则∠ADE等于( )
    A.15.5° B.22.5° C.45° D.67.5°
    8、(4分)化简(+2)的结果是( )
    A.2+2B.2+C.4D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)命题”两条对角线相等的平行四边形是矩形“的逆命题是_____.
    10、(4分)将一个矩形纸片按如图所示折叠,若, 则的度数是______.
    11、(4分)数据﹣2、﹣1、0、1、2的方差是_____.
    12、(4分)一个正多边形的每个外角等于72°,则它的边数是__________.
    13、(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)抛物线经过点、两点.
    (1)求抛物线顶点D的坐标;
    (2)抛物线与x轴的另一交点为A,求的面积.
    15、(8分)武汉某中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间分成、、、四个等级(等:,等:,等:,等:;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:
    (1)组的人数是____人,并补全条形统计图.
    (2)本次调查的众数是_____等,中位数落在_____等.
    (3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有_____人.
    16、(8分)如图,AD是△ABC的高,BE平分∠ABC交AD于点E,∠C=70º,∠BED=64º,求∠BAC的度数.
    17、(10分)如图,在四边形ABCD中,AD⊥BD,BC=4,CD=3,AB=13,AD=12,求证:∠C=90°.
    18、(10分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶10次,命中的环数如下:
    甲:7、8、6、8、6、5、9、10、7、4
    乙:9、5、7、8、7、6、8、6、7、7
    如果你是教练你会选拔谁参加比赛?为什么?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
    20、(4分)如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为_____cm.
    21、(4分)某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设A型包装箱每个可以装件文具,根据题意列方程为 .
    22、(4分)如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=24,BD=10,若点E是BC边的中点,则OE的长是_____.
    23、(4分)如图,直线 与轴交于点 ,依次作正方形 、正方形 、……正方形 ,使得点、…, 在直线 上,点 在轴上,则点 的坐标是________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)小聪与小明在一张矩形台球桌ABCD边打台球,该球桌长AB=4m,宽AD=2m,点O、E分别为AB、CD的中点,以AB、OE所在的直线建立平面直角坐标系。
    (1)如图1,M为BC上一点;
    ①小明要将一球从点M击出射向边AB,经反弹落入D袋,请你画出AB上的反弹点F的位置;
    ②若将一球从点M(2,12)击出射向边AB上点F(0.5,0),问该球反弹后能否撞到位于(-0.5,0.8)位置的另一球?请说明理由
    (2)如图2,在球桌上放置两个挡板(厚度不计)挡板MQ的端点M在AD中点上且MQ⊥AD,MQ=2m,挡板EH的端点H在边BC上滑动,且挡板EH经过DC的中点E;
    ①小聪把球从B点击出,后经挡板EH反弹后落入D袋,当H是BC中点时,试证明:DN=BN;
    ②如图3,小明把球从B点击出,依次经挡板EH和挡板MQ反弹一次后落入D袋,已知∠EHC=75°,请你直接写出球的运动路径BN+NP+PD的长。
    25、(10分)已知一次函数的图象过点A(0,3)和点B(3,0),且与正比例函数的图象交于点P.
    (1)求函数的解析式和点P的坐标.
    (2)画出两个函数 的图象,并直接写出当时的取值范围.
    (3)若点Q是轴上一点,且△PQB的面积为8,求点Q的坐标.
    26、(12分)如图,在平行四边形ABCD中,点M、N分别在线段DA、BA的延长线上,且BD=BN=DM,连接BM、DN并延长交于点P.
    求证:∠P=90°﹣∠C;
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    方程移项后,利用因式分解法求出解即可.
    【详解】
    解:(x-2)2=3(x-2),
    (x-2)2-3(x-2)=0,
    (x-2)(x-2-3)=0,
    x-2=0,x-2-3=0,
    x1=2,x2=1.
    故选C.
    本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.
    2、C
    【解析】
    此题关键是求出CH的长,根据两次折叠后的图像中△GBH∽△ECH,得到对应线段成比例即可求解.
    【详解】
    由图可知经过两次折叠后,
    GB=FG-BF=FG-(10-FG)=2
    BF=EC=10-FG=4,
    ∵FG∥EC,
    ∴△GBH∽△ECH

    ∵GB=2,EC=4,
    ∴CH=2BH,
    ∵BC=BH+CH=6,
    ∴CH=4,
    ∴S△ECH=EC×CH=×4×4=8.
    故选C
    此题主要考查矩形的折叠问题,解题的关键是熟知相似三角形的判定与性质.
    3、D
    【解析】
    首先求出平均数再进行吧比较,然后再根据法方差的公式计算.
    =,
    =,
    =,
    =
    所以=,<.
    故选A.
    “点睛”此题主要考查了平均数和方差的求法,正确记忆方差公式是解决问题的关键.
    4、D
    【解析】
    根据直角三角形的性质及勾股定理即可解答.
    【详解】
    如图所示,
    Rt△ABC中,AB=2,


    故此三角形的周长是+3.
    故选:D.
    考查勾股定理,含30度角的直角三角形,熟练掌握含30度角的直角三角形的性质是解题的关键.
    5、B
    【解析】
    试题分析:根据同一时刻物体的高度和物体的影长成比例可得:1.6:1.2=树高:3.6,则可解得树高为4.8m.
    考点:相似三角形的应用
    6、B
    【解析】
    根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
    【详解】
    ∵函数的图象在其象限内y的值随x值的增大而增大,
    ∴m+1<0,
    解得m<-1.
    故选B.
    7、B
    【解析】
    由正方形的对角线平分对角得∠DBE=45°,再由BE=BD,等边对等角结合三角形内角和求出∠BDE,最后由∠BDE和∠BDA之差求得∠ADE.
    【详解】
    ∵四边形ABCD为正方形,
    ∴∠DBE=45°,
    又∵BD=BE,
    ∴△BDE为等腰三角形,
    ∴∠BDE=(180°-45°)÷2=67.5,
    ∴∠ADE=∠BDE-∠BDA=90°-67.5°=22.5°,
    故答案为:B.
    此题主要考查正方形的性质,解题的关键是熟知等腰三角形与正方形的性质.
    8、A
    【解析】
    试题解析:(+2)= 2+2.
    故选A.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、矩形是两条对角线相等的平行四边形.
    【解析】
    把命题的条件和结论互换就得到它的逆命题.
    【详解】
    命题”两条对角线相等的平行四边形是矩形“的逆命题是矩形是两条对角线相等的平行四边形,
    故答案为矩形是两条对角线相等的平行四边形.
    本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
    10、40°
    【解析】
    依据平行线的性质,即可得到,,进而得出,再根据进行计算即可.
    【详解】
    解:如图所示,,
    ,,
    由折叠可得,,

    故答案为:.
    本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
    11、2
    【解析】
    根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.
    【详解】
    由题意可得,
    这组数据的平均数是:x= =0,
    ∴这组数据的方差是: ,
    故答案为:2.
    此题考查方差,解题关键在于掌握运算法则
    12、1
    【解析】
    根据题意利用多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.
    【详解】
    解:360÷72=1.
    故它的边数是1.
    故答案为:1.
    本题考查多边形内角与外角,根据正多边形的外角和求多边形的边数是解题的关键.
    13、1.
    【解析】
    ∵,
    ∴=0,b-2=0,解得a=3,b=2.
    ∵直角三角形的两直角边长为a、b,
    ∴该直角三角形的斜边长=.
    三、解答题(本大题共5个小题,共48分)
    14、(1)D(1,4);(2)6.
    【解析】
    试题分析:(1)利用待定系数法代入求出a,c的值,进而利用配方法求出D点坐标即可;
    (2)首先求出图象与x轴的交点坐标,进而求出△ABC的面积.
    试题解析:(1)由题意,得,
    解得,
    则y=-x2+2x+3=-(x-1)2+4,
    则D(1,4);
    (2)由题意,得-x2+2x+3=0,
    解得x1=-1,x2=3;
    则A(-1,0),
    又∵B(3,0)、C(0,3),
    ∴S△ABC=×4×3=6
    15、(1)50;(2)众数是B等,中位数落在C等;(3)3325人.
    【解析】
    (1)根据A的人数除以A所占的百分,可得调查的总人数,根据有理数的减法,可得C的人数;
    (2)根据众数的定义,中位数的定义,可得答案;
    (3)根据样本估计总体,可得答案.
    【详解】
    (1)调查的总人数40÷20%=200人,C组的人数=200﹣40﹣100﹣10=50,补充如图:
    (2)本次调查的众数是 100,即B等,中位数是=75,落在C等;
    (3)3500×=3325人.
    答:该校今年有3500名学生,达到国家规定的阅读时间的人数约有3325人.
    本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    16、58°.
    【解析】
    由已知条件,首先得出∠DAC=20°,再利用∠ABE=∠EBD,进而得出∠ABE+∠BAE=64°,求出∠EBD=26°,进而得出答案.
    【详解】
    ∵AD是△ABC的高,∠C=70°,
    ∴∠DAC=20°,
    ∵BE平分∠ABC交AD于E,
    ∴∠ABE=∠EBD,
    ∵∠BED=64°,
    ∴∠ABE+∠BAE=64°,
    ∴∠EBD+64°=90°,
    ∴∠EBD=26°,
    ∴∠BAE=38°,
    ∴∠BAC=∠BAE+∠CAD=38°+20°=58°.
    此题主要考查了三角形的外角与三角形内角和定理等知识,题目综合性较强,注意从已知条件得出所有结论是解决问题的关键.
    17、证明见解析.
    【解析】
    先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明CD⊥BC.
    【详解】
    证明:∵AD⊥BD,AB=13,AD=12,
    ∴BD=1.
    又∵BC=4,CD=3,
    ∴CD2+BC2=BD2.
    ∴∠C=90°
    本题考查了勾股定理及其逆定理,注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
    18、乙同学的成绩较稳定,应选乙参加比赛
    【解析】
    试题分析:比较甲、乙两人的成绩的方差作出判断.
    试题解析:
    =(7+8+6+8+6+5+9+10+4+7)=7;
    S甲2= [(7-7)2+(8-7)2+(6-7)2+(8-7)2+(6-7)2+(5-7)2+(9-7)2+(10-7)2+(4-7)2+(7-7)2]=3;
    =(9+5+7+8+6+8+7+6+7+7)=7;
    S乙2=[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(6-7)2+(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2;
    ∴因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,
    ∴乙同学的成绩较稳定,应选乙参加比赛.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、0.5
    【解析】
    首先根据三角形周长及斜边长度求得两直角边的和,再根据勾股定理得出两直角边各自平方数的和的值,再利用完全平方公式得出两直角边的乘积的2倍的值即可求出三角形面积.
    【详解】
    解:由题意可得AC+BC+AB=,
    ∵∠C=90°,则AB为斜边等于2,
    ∴AC+BC=,
    再根据勾股定理得出,
    根据完全平方公式,
    将AC+BC=和代入公式得:,
    即=1,
    ∴Rt△ABC面积=0.5=0.5.
    本题考查了勾股定理,解题的关键是利用完全平方公式求得两直角边的乘积的2倍的值.
    20、13.
    【解析】
    利用垂直平分线性质得到AE=EC,△CDE的周长为ED+DC+EC=AE+ED+DC,为平行四边形周长的一半,故得到答案
    【详解】
    利用平行四边形性质得到O为AC中点,又有OE⊥AC,所以EO为AC的垂直平分线,故AE=EC,所以△CDE的周长为ED+DC+EC=AE+ED+DC=AD+CD,即为平行四边形周长的一半,得到△CDE周长为26÷2=13cm,故填13
    本题主要考查垂直平分性性质,平行四边形性质等知识点,本题关键在于能够找到OE为垂直平分线
    21、
    【解析】
    单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量+12=所用A型包装箱的数量,由此可得到所求的方程
    【详解】
    解:根据题意,得:
    22、6.1.
    【解析】
    根据菱形的性质:对角线互相垂直,利用勾股定理求出BC,再利用直角三角形斜边的中线的性质OE=BC,即可求出OE的长.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,OA=AC=12,OD=BD=1,
    在Rt△BOC中,BC==13,
    ∵点E是BC边的中点,
    ∴OE=BC=6.1,
    故答案为:6.1.
    此题主要考查了菱形的性质、勾股定理的运用以及直角三角形斜边上的中线等于斜边的一半等知识,得出EO=BC是解题关键.
    23、(22019-1,22018)
    【解析】
    先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n-1,2n-1),据此即可求解点B2019的坐标.
    【详解】
    解:∵令x=0,则y=1,
    ∴A1(0,1),
    ∴OA1=1.
    ∵四边形A1B1C1O是正方形,
    ∴A1B1=1,
    ∴B1(1,1).
    ∵当x=1时,y=1+1=2,
    ∴B2(3,2);
    同理可得,B3(7,4);
    ∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,
    ∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,
    ∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,
    ∴Bn的纵坐标是:2n-1,横坐标是:2n-1,
    则Bn(2n-1,2n-1),
    ∴点B2019的坐标是(22019-1,22018).
    故答案为:(22019-1,22018).
    本题考查一次函数图象上点的坐标特征、正方形的性质和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)①答案见解析 ②答案见解析 (2)①证明见解析 ②
    【解析】
    (1)①根据反射的性质画出图形,可确定出点F的位置;②过点H作HG⊥AB于点G,利用点H的坐标,可知HG的长,利用矩形的性质结合已知可求出点B,C的坐标,求出BM,BF的长,再利用锐角三角函数的定义,去证明tan∠MFB=tan∠HFG,即可证得∠MFB=∠HFG,即可作出判断;
    (2)①连接BD,过点N作NT⊥EH于点N,交AB于点T,利用三角形中位线定理可证得EH∥BD,再证明MQ∥AB,从而可证得∠DNQ=∠BNQ,∠DQN=∠NQB,利用ASA证明△DNQ≌△BNQ,然后利用全等三角形的性质,可证得结论;②作点B关于EH对称点B',过点B'作B'G⊥BC交BC的延长线于点G,连接B'H,B'N,连接AP,过点B'作B'L⊥x轴于点L,利用轴对称的性质,可证得AP=DP,NB'=NB,∠BHN=∠NHB'根据反射的性质,易证AP,NQ,NC在一条直线上,从而可证得BN+NP+PD=AB',再利用邻补角的定义,可求出∠B'HG=30°,作EK=KH,利用等腰三角形的性质,及三角形外角的性质,求出∠CKH的度数,利用解直角三角形表示出KH,CK的长,由BC=2,建立关于x的方程,解方程求出x的值,从而可得到CH,B'H的长,利用解直角三角形求出GH,BH的长,可得到点B'的坐标,再求出AL,B'L的长,然后在Rt△AB'L中,利用勾股定理就可求出AB'的长.
    【详解】
    (1)解: ①如图1,
    ②答:反弹后能撞到位于(-0.5,0.8)位置的另一球
    理由:如图,设点H(-0.5,0.8),过点H作HG⊥AB于点G,
    ∴HG=0.8
    ∵矩形ABCD,点O,E分别为AB,CD的中点,AD=2,AB=4,
    ∴OB=OA=2,BC=AD=OE=2
    ∴点B(2,0),点C(2,2),
    ∵ 点M(2,1.2),点F(0.5,0),
    ∴BF=2-0.5=1.5,BM=1.2,
    FG=0.5-(-0.5)=1
    在Rt△BMF中,
    tan∠MFB=,
    在Rt△FGH中,
    tan∠HFG=,
    ∴∠MFB=∠HFG,
    ∴反弹后能撞到位于(-0.5,0.8)位置的另一球 .
    (2)解:①连接BD,过点N作NT⊥EH于点N,交AB于点T,
    ∴∠TNE=∠TNH=90°,
    ∵小聪把球从B点击出,后经挡板EH反弹后落入D袋,
    ∴∠BNH=∠DNE,
    ∴∠DNQ=∠BNQ;
    ∵点M是AD的中点,MQ⊥EO,
    ∴MQ∥AB,
    ∴点Q是BD的中点,
    ∴NT经过点Q;
    ∵点E,H分别是DC,BC的中点,
    ∴EH是△BCD的中位线,
    ∴EH∥BD
    ∵NT⊥EH
    ∴NT⊥BD;
    ∴∠DQN=∠NQB=90°
    在△DNQ和△BNQ中,
    ∴△DNQ≌△BNQ(ASA)
    ∴DN=BN
    ②作点B关于EH对称点B',过点B'作B'G⊥BC交BC的延长线于点G,连接B'H,B'N,连接AP,过点B'作B'L⊥x轴于点L,
    ∴AP=DP,NB'=NB,∠BHN=∠NHB'
    由反射的性质,可知AP,NQ,NC在一条直线上,
    ∴BN+NP+PD=NB'+NP+AP=AB';
    ∵∠EHC=75°,∠EHC+∠BHN=180°,
    ∴∠BHN=180°-75°=105°,
    ∴∠NHB'=∠EHC+∠B'HG=105°
    ∴∠B'HG=30°;
    如图,作EK=KH,
    在Rt△ECH中,∠EHC=75°,
    ∴∠E=90°-75°=15°,
    ∴∠E=∠KHE=15°
    ∴∠CKH=∠E+∠KHE=15°+15°=30°,
    ∵设CH=x,则KH=2x,CK=

    解之:x=,
    ∴CH=
    ∴BH=B'H=BC-CH=2-()=;
    在Rt△B'GH中,
    B'G=;
    GH=B'Hcs∠B'HG=()×;
    BG=BH+GH=
    ∴点B'的横坐标为:,
    ∴点B';
    ∴AL=,
    B'L=
    在Rt△AB'L中,
    AB'=
    ∴ 球的运动路径BN+NP+PD的长为.
    本题考查反射的性质,解直角三角形,矩形的性质,全等三角形的判定和性质以及勾股定理等知识点:(1)①根据反射的性质作图,②根据等角的三角函数值相等证明∠MFB=∠HFG来说明反弹后能撞到另一球;(2)①利用ASA证明△DNQ≌△BNQ,然后利用全等三角形的性质可得结论,②作出辅助线,根据反射的性质和轴对称的性质证明BN+NP+PD=AB',然后构建方程,解直角三角形并结合勾股定理求出AB'的长;其中能够根据反射的性质作出图形,利用方程思想及数形结合思想结合直角三角形的特殊角进行求解是解题的关键.
    25、(1),点的坐标为;(2)函数图象见解析,x<1;(2)点Q的坐标为(-5,0)或(11,0).
    【解析】
    (1)根据待定系数法求出一次函数解析式,与联立方程组即可求出点P坐标;
    (2)画出函数图象,根据图像即可写出当时的取值范围;
    (3)根据△PQB的面积为8,求出BQ,即可求出点Q坐标.
    【详解】
    解:(1)将,代入,

    解得
    ,,
    ∴直线AB解析式为,
    一次函数,与正比例函数联立得
    解得
    点的坐标为;
    (2)如图,当时的取值范围是x<1;
    (3)∵△PQB的面积为8,
    ∴,
    ∴BQ=8,
    ∴点Q的坐标为(-5,0)或(11,0).
    本题考查了待定系数法求函数解析式,一次函数与二元一次方程(组)关系,解题关键是明确两个一次函数解析式组成二元一次方程组的解即是两直线的交点坐标.解第(3)问时注意点Q分类讨论解题.
    26、证明见解析.
    【解析】
    分析:首先过点B作BF⊥PD于点F,过点D作DG⊥BP于点G,BF与DG交于点H,由BD=BN=DM,可得BF与DG是∠DBN、∠MDB的平分线,又由四边形内角和为360°,可得∠P+∠FHG=180°,继而可得∠DHB=∠FHG=180°-∠P=90°+∠C,则可证得结论.
    详解:证明:过点B作BF⊥PD于点F,过点D作DG⊥BP于点G,BF与DG交于点H,
    ∴∠FHG+∠P=180°,
    ∴∠DHB+∠P=180°,
    ∴∠DHB=180°﹣∠P,
    ∵BD=BN=DM,
    ∴BF与DG是∠DBN、∠MDB的平分线,
    ∴由四边形内角和为360°,可得∠P+∠FHG=180°,
    ∵∠DHB=180°﹣(∠GDB+∠FBD)=180°﹣(180°﹣∠DAB)=90°﹣∠DAB,
    ∵四边形ABCD是平行四边形,
    ∴∠DAB=∠C,
    ∴∠DHB=90°﹣∠C,
    ∵∠DHB=180°﹣∠P,
    ∴180°﹣∠P=90°+∠C,
    ∴∠P=90°﹣∠C;
    点睛:此题考查了平行四边形的性质、三角形内角和及外角的性质、角平分线的性质等知识.此题综合性较强,难度较大,解题的关键是准确作出辅助线,注意掌握数形结合思想与方程思想的应用.
    题号





    总分
    得分
    批阅人

    队员1
    队员2
    队员3
    队员4
    甲组
    176
    177
    175
    176
    乙组
    178
    175
    177
    174
    相关试卷

    2024年甘肃省陇南市九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年甘肃省陇南市九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年甘肃省会师中学九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年甘肃省会师中学九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map