2024年武汉市第二初级中学九上数学开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某单位组织职工开展植树活动,植树量与人数之间的关系如下表,下列说法不正确的是()
A.参加本次植树活动共有29人B.每人植树量的众数是4
C.每人植树量的中位数是5D.每人植树量的平均数是5
2、(4分)下列各式中,属于分式的是( )
A.B.C.D.
3、(4分)下列说法正确的是( )
A.为了解我国中学生课外阅读的情况,应采取全面调查的方式
B.一组数据1、2、5、5、5、3、3的中位数和众数都是5
C.投掷一枚硬币100次,一定有50次“正面朝上”
D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定
4、(4分)已知数据的平均数是10,方差是6,那么数据的平均数和方差分别是( )
A.13,6B.13,9C.10,6D.10,9
5、(4分)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AB,BC,CD,AD的中点.若AC=10,BD=6,则四边形EFGH的面积为( )
A.15B.20C.30D.60
6、(4分)已知关于的方程的两根互为倒数,则的值为( )
A.B.C.D.
7、(4分)如图, 直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点, 点P为OA上一动点, 当PC+PD最小时, 点P的坐标为( )
A.(-4,0)B.(-1,0)C.(-2,0)D.(-3,0)
8、(4分)如图,点O是AC的中点,将面积为4cm2的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB′C′D′,则图中阴影部分的面积是( )
A.1cm2B.2cm2C.3cm2D.4cm2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)因式分解: .
10、(4分)如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.
11、(4分)甲、乙二人在相同情况下,各射靶次,两人命中环数的方差分别是,,则射击成绩较稳定的是_________.(填“甲”或“乙")
12、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.
13、(4分)如图,一块矩形的土地被分成4小块,用来种植4种不同的花卉,其中3块面积分别是,,,则第四块土地的面积是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(1) (2)
15、(8分)如图,在四边形中,,点为的中点.
(1)求证:四边形是菱形;
(2)联结,如果平分, 求的长.
16、(8分)如图,已知点E在平行四边形ABCD的边AB上,设=,再用图中的线段作向量.
(1)写出平行的向量 ;
(2)试用向量表示向量;
(3)求作:.
17、(10分)根据下列条件求出相应的函数表达式:
(1)直线y=kx+5经过点(-2,-1);
(2)一次函数中,当x=1时,y=3;当x=-1时,y=1.
18、(10分)如图,一次函数的图象分别与x轴,y轴交于A、B两点,正比例函数的图象与交于点.
(1)求m的值及的解析式;
(2)求得的值为______;
(3)一次函数的图象为,且,,可以围成三角形,直接写出k的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:
则这50名学生一周的平均课外阅读时间是____小时.
20、(4分)小丽计算数据方差时,使用公式S2=,则公式中=__.
21、(4分)使有意义的x的取值范围是______.
22、(4分)若关于x的方程+=3的解为正数,则m的取值范围是______.
23、(4分)在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)取一张长与宽之比为的长方形纸板,剪去四个边长为的小正方形(如图),并用它做一个无盖的长方体形状的包装盒,要使包装盒的容积为(纸板的厚度略去不计),这张长方形纸板的长与宽分别为多少厘米?
25、(10分)小明、小亮都是射箭爱好者,他们在相同的条件下各射箭5次,每次射箭的成绩情况如表:
(1)请你根据表中的数据填写下表:
(2)从平均数和方差相结合看,谁的成绩好些?
26、(12分)甲、乙两车间同时开始加工—批服装.从开始加工到加工完这批服装甲车间工作了小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为(件).甲车间加工的时间为(时),与之间的函数图象如图所示.
(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件;
(2)求乙车间维修设备后,乙车间加工服装数量与之间的函数关系式;
(3)求甲、乙两车间共同加工完1140件服装时甲车间所用的时间.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分析:A.将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.7棵,结论D错误.此题得解.
详解:A.∵4+10+8+6+1=29(人),∴参加本次植树活动共有29人,结论A正确;
B.∵10>8>6>4>1,∴每人植树量的众数是4棵,结论B正确;
C.∵共有29个数,第15个数为5,∴每人植树量的中位数是5棵,结论C正确;
D.∵(3×4+4×10+5×8+6×6+7×1)÷29≈4.7(棵),∴每人植树量的平均数约是4.7棵,结论D不正确.
故选D.
点睛:本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.
2、C
【解析】
根据分式的定义,可得出答案.
【详解】
A、分母中不含未知数故不是分式,故错误;
B、是分数形式,但分母不含未知数不是分式,故错误;
C、是分式,故正确;
D、分母中不含未知数不是分式,故错误.
故选C
本题考查了分式的定义,熟练掌握分式的概念是正确求解的关键.
3、D
【解析】
解:为了解我国中学生课外阅读的情况,应采取抽样调查的方式,故选项A错误,
把数据1、2、5、5、5、3、3从小到大排列1、2、3、3、5、5、5;所以中位数为:3;
5出现的次数最多,所以众数是5,故选项B错误,
投掷一枚硬币100次,可能有50次“正面朝上”,但不一定有50次“正面朝上”,故选项C错误,
若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定,故选项D正确,
故选D.
本题考查全面调查与抽样调查、中位数、众数、方差,解答本题的关键是明确它们各自的含义.
4、A
【解析】
根据样本数据的平均数与方差,可以推导出数据的平均数与方差.
【详解】
解:由题意得平均数,方差,
∴的平均数,
方差,故选A.
本题考查了样本数据的平均数与方差的应用问题,解题时可以推导出结论,也可以利用公式直接计算出结果,是基础题目.
5、A
【解析】
根据三角形中位线定理、矩形的判定定理得到平行四边形EFGH为矩形,根据矩形的面积公式计算即可.
【详解】
解:∵点E,F分别为边AB,BC的中点.
∴EF=AC=5,EF∥AC,
同理,HG=AC=5,HG∥AC,EH=BD=3,EH∥BD,
∴EF=HG,EF∥HG,
∴四边形EFGH为平行四边形,
∵EF∥AC,AC⊥BD,
∴EF⊥BD,
∵EH∥BD,
∴∠HEF=90°,
∴平行四边形EFGH为矩形,
∴四边形EFGH的面积=3×5=1.
故选:A.
本题考查中点四边形的概念和性质、掌握三角形中位线定理、矩形的判定定理是解题的关键.
6、C
【解析】
设两根为x1,x2,根据当两根互为倒数时:x1x2=1,再根据根与系数的关系即可求解.
【详解】
解:设两根为x1,x2,
∵关于的方程的两根互为倒数,
∴x1x2=1,即2m-1=1,解得m=1.
故选:C
本题考查了根与系数的关系,属于基础题,关键掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根则
7、C
【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标并根据三角形中位线定理得出CD//x轴,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.
【详解】
解:连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示
在中,当y=0时,,解得x=-8,A点坐标为,
当x=0时,,B点坐标为,
∵点C、D分别为线段AB、OB的中点,
∴点C(-4,3),点D(0,3),CD∥x轴,
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-3),点O为线段DD′的中点.
又∵OP∥CD,
∴OP为△CD′D的中位线,点P为线段CD′的中点,
∴点P的坐标为,
故选:C.
本题考查轴对称——最短路径问题,一次函数图象与坐标轴交点问题,三角形中位线定理.能根据轴对称的性质定理找出PC+PD值最小时点P的位置是解题的关键.
8、A
【解析】
根据题意得,▱ABCD∽▱OECF,且AO=OC=AC,故四边形OECF的面积是▱ABCD面积的.
【详解】
由平移的性质得,▱ABCD∽▱OECF,且AO=OC=AC,
故四边形OECF的面积是▱ABCD面积的.,
即图中阴影部分的面积为1cm1.
故选A.
此题主要考查学生对菱形的性质及平移的性质的综合运用.关键是得出四边形OECF的面积是▱ABCD面积的.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
10、56°
【解析】
根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.
【详解】
∵四边形ABCD是矩形,
∴AD//BC,
∴∠FEC=∠1=62°,
∵将一张矩形纸片ABCD沿 EF折叠后,点C落在AB边上的点 G 处,
∴∠GEF=∠FEC=62°,
∴∠BEG=180°-∠GEF-∠FEC=56°,
故答案为56°.
本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.
11、乙
【解析】
根据方差的意义解答即可.
【详解】
方差反映了数据的离散程度,方差越小,成绩越稳定,故射击成绩比较稳定的是乙.
故答案为:乙.
本题主要考查了方差的意义,清楚方差反映了数据的离散程度,方差越小,数据越稳定是解题的关键.
12、二
【解析】
根据各象限内点的坐标特征,可得答案.
【详解】
解:由点A(x,y)在第三象限,得
x<0,y<0,
∴x<0,-y>0,
点B(x,-y)在第二象限,
故答案为:二.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
13、54
【解析】
由矩形的面积公式可得20m2,30m2的两个矩形的长度比为2:3,即可求第四块土地的面积.
【详解】
解:∵20m2,30m2的两个矩形是等宽的,
∴20m2,30m2的两个矩形的长度比为2:3,
∴第四块土地的面积==54m2,
故答案为:54
本题考查了矩形的性质,熟练运用矩形的面积公式是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)14;(2)
【解析】
(1)先根据二次根式的性质把各个根式化成最简二次根式,再合并同类二次根式即可.
(2)根据多项式乘以多项式的运算法则计算即可.
【详解】
解:(1)原式=
=
=14
(2)原式=
=
本题考查了二次根式的性质和多项式与多项式相乘,解题的关键是准确的化简二次根式,以及掌握乘法运算法则.
15、(1)见解析;(2)2
【解析】
(1)根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.
(2)此题有两种解决方法,方法一:证明四边形是等腰梯形,方法二:证明∠BDC为直角.
【详解】
(1)证明:,点为的中点,
,
又四边形是平行四边形
,四边形是菱形
(2)解:方法一四边形是梯形.
平分
四边形是菱形,.
四边形是等腰梯形,
方法二:平分
,即,
四边形是菱形,
,即,
此题考查菱形的判定与性质,解题关键在于结结合题意运用菱形的判定与性质即可.
16、 (1);(2);(3)见解析.
【解析】
根据平面向量的知识,再利用三角形法即可求解.
【详解】
在此处键入公式。
(1)与是平行向量;
(2)=+=﹣+=﹣
=+=﹣+=﹣(﹣)+=-++
(3)∵+=+=
如图所示,
该题主要考查了平面向量的知识,注意掌握三角形法的应用.
17、(1);(2).
【解析】
(1)将点代入即可得;
(2)根据点和,直接利用待定系数法即可得.
【详解】
(1)将点代入直线得:
解得
则函数表达式为;
(2)设一次函数的表达式为
由题意,将点和代入得:
解得
则一次函数的表达式为.
本题考查了利用待定系数法求一次函数的表达式,掌握待定系数法是解题关键.
18、 (1);;(2);(3)且且.
【解析】
(1)由求出点C坐标,待定系数法可得的解析式;
(2)分别求出的面积即可;
(3) 或过点C时围不成三角形,由此可知k的取值范围.
【详解】
解:(1)∵点在一次函数的图象上
∴把代入得,解得
设的解析式为,将点代入得,解得
∴的解析式为
(2) 时,,所以,即,由可知点C到x轴的距离为,到y轴的距离为.
(3)由题意可得或过点C时围不成三角形
当时,,当时,,当过点C时,将点C代入得,解得
所以当,,可以围成三角形时k的取值范围为且且.
本题考查了一次函数,包括待定系数法求解析式及函数图像围成三角形的面积,正确理解题意,做到数形结合是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5.3
【解析】
(4×10+5×20+6×15+7×5) ÷50=5.3(小时).
故答案为5.3.
20、1
【解析】
分析:根据题目中的式子,可以得到的值,从而可以解答本题.
详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.
故答案为1.
点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.
21、
【解析】
二次根式有意义的条件.
【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
22、m<且m≠
【解析】
去分母得:x+m-3m=3(x-3)
去括号得x+m-3m=3x-9
移项,整理得:x=
∵x>0,且x≠3
∴>0,且≠3
解得:m<且m≠.
23、1+2
【解析】
取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.
【详解】
如图1,取DE的中点N,连结ON、NG、OM.
∵∠AOB=90°,
∴OM=AB=2.
同理ON=2.
∵正方形DGFE,N为DE中点,DE=1,
∴.
在点M与G之间总有MG≤MO+ON+NG(如图1),
如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,
∴线段MG取最大值1+2.
故答案为:1+2.
此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.
二、解答题(本大题共3个小题,共30分)
24、长为30厘米,宽为12厘米
【解析】
设该长方形纸板的长为,宽为,根据题意列出一元二次方程即可进行求解.
【详解】
解:设该长方形纸板的长为,宽为,
根据题意得:,即,
解得:,(不合题意舍去),
∴,.
答:这张长方形纸板的长为30厘米,宽为12厘米
此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.
25、(1)填表见解析;(2)见解析.
【解析】
分析:(1)根据平均数、众数和方差的定义进行填表即可;
(2)根据两人的成绩的平均数相同,再根据方差得出乙的成绩比甲稳定,即可求出答案.
详解:(1)填表如下:
(2)小明和小亮射箭的平均数都是7,但小明比小亮的方差要小,说明小明的成绩较为稳定,所以小明的成绩比小亮的成绩要好些.
点睛:本题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
26、(1)90,1300;(2);(3)1.
【解析】
(1)由图像可得点可得答案;
(2)由图可知乙车间每小时加工服装:140÷2=70件,求解维修设备后坐标为,再把(4,140)、(9,490)代入乙车间的函数关系式y=kx+b,从而可得答案;
(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于,求出x值,可得答案.
【详解】
解:(1)由图像可得点 可得甲小时加工了件服装,
所以:甲车间每小时加工服装件数为件,
由图像可得点,可得乙加工的总数为件,
所以这批服装共有件.
故答案为:
(2)由图可知乙车间每小时加工服装:140÷2=70件,
所以:乙车间共需要:490÷70=7小时,
维修设备时间:9-7=2小时,
∴ 维修设备后坐标为,
设乙车间的函数关系式为:y=kx+b,
代入点(4,140)、(9,490),
得:
解得,
所以:y=70x﹣140;
(3)设甲车间代入点(9,110)得:
则9m=110,
解得:m=90,
所以:
由y + y1= 1140得:
70x﹣140+90x=1140
解得:x=1
答:甲、乙两车间共同加工完1140件服装时甲车间所用时间是1小时.
本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
题号
一
二
三
四
五
总分
得分
批阅人
植树量(棵)
3
4
5
6
7
人数
4
10
8
6
1
时间(时)
4
5
6
7
人数
10
20
15
5
射箭次数
第1次
第2次
第3次
第4次
第5次
小明成绩(环)
6
7
7
7
8
小亮成绩(环)
4
8
8
6
9
姓名
平均数(环)
众数(环)
方差
小明
7
0.4
小亮
8
2024年陕西省西安市高新第二初级中学九上数学开学检测试题【含答案】: 这是一份2024年陕西省西安市高新第二初级中学九上数学开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省临沭县第五初级中学九上数学开学质量检测模拟试题【含答案】: 这是一份2024年山东省临沭县第五初级中学九上数学开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河北沧州泊头市苏屯初级中学九上数学开学质量检测模拟试题【含答案】: 这是一份2024年河北沧州泊头市苏屯初级中学九上数学开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。