武汉市第二初级中学2023-2024学年九上数学期末质量检测试题含答案
展开
这是一份武汉市第二初级中学2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了方程x2+5x=0的适当解法是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.下列运算正确的是( )
A.B.
C.D.
2.如图,菱形的边长是4厘米,,动点以1厘米/秒的速度自点出发沿方向运动,动点以2厘米/秒的速度自点出发沿方向运动至点停止,同时点也停止运动若点,同时出发运动了秒,记的面积为厘米2,下面图象中能表示与之间的函数关系的是( )
A.B.C.D.
3.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是( )
A.①②③④B.①②③C.①②④D.②③④
4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是( )
A.①②B.①③④C.①②③⑤D.①②③④⑤
5.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是( )
A.B.
C.D.
6.如图,等边的边长为 是边上的中线,点是 边上的中点. 如果点是 上的动点,那么的最 小值为( )
A.B.C.D.
7.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=( )
A.30°B.40°C.50°D.60°
8.已知在Rt△ABC中,∠A=90°,AB=3,BC=5,则csB的值是( )
A.B.C.D.
9.方程x2+5x=0的适当解法是( )
A.直接开平方法B.配方法
C.因式分解法D.公式法
10.在平面直角坐标系中,把点绕原点顺时针旋转,所得到的对应点的坐标为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).
12.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有________种
13.在一个不透明的袋子中只装有n个白球和4个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为_____.
14.如图,点在函数的图象上,直线分别与轴、轴交于点,且点的横坐标为4,点的纵坐标为,则的面积是________.
15.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm1.(结果保留π)
16.已知反比例函数的图象经过点,若点在此反比例函数的图象上,则________.
17.已知关于x的一元二次方程的常数项为零,则k的值为_____.
18.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2.
以上结论中,你认为正确的有 .(填序号)
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.
(1)画出关于轴的对称图形;
(2)将以为旋转中心顺时针旋转90°得到,画出旋转后的图形,并求出旋转过程中线段扫过的扇形面积.
20.(6分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,平均每天可盈利y元.
写出y与x的函数关系式;
当该专卖店每件童装降价多少元时,平均每天盈利400元?
该专卖店要想平均每天盈利600元,可能吗?请说明理由.
21.(6分)如图是反比例函数的图象的一个分支.
比例系数的值是________;
写出该图象的另一个分支上的个点的坐标:________、________;
当在什么范围取值时,是小于的正数?
如果自变量取值范围为,求的取值范围.
22.(8分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
理解:
(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点 D,使四边形ABCD是以AC为“相似对角线”的四边形(画出1个即可);
(2)如图2,在四边形ABCD中,,对角线BD平分∠ABC.
求证: BD是四边形ABCD的“相似对角线”;
运用:
(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=.连接EG,若△EFG的面积为,求FH的长.
23.(8分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.
(1)求证:BE是⊙O的切线;
(2)当BE=3时,求图中阴影部分的面积.
24.(8分)如图,已知,是的中点,过点作.求证:与相切.
25.(10分)如图,在等腰直角三角形ABC中,D是AB的中点,E,F分别是AC,BC.上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF
(1)求证:四边形EDFG是正方形;
(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?
26.(10分)如图,外接,点在直径的延长线上,
(1)求证:是的切线;
(2)若,求的半径
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、B
4、C
5、B
6、D
7、C
8、A
9、C
10、C
二、填空题(每小题3分,共24分)
11、y=﹣(x﹣1)2+1(答案不唯一)
12、1.
13、1.
14、
15、60π
16、
17、1
18、①③④
三、解答题(共66分)
19、(1)见解析;(2)见解析,
20、(1);(2)10元:(3)不可能,理由见解析
21、(1)12;(2)(﹣2,﹣6),(﹣3,﹣4);(3)x>4;(4)y的取值范围是4≤y≤6.
22、(1)详见解析;(2)详见解析;(3)4
23、(1)证明见解析;(2)
24、详见解析.
25、(1)详见解析;(2)当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4
26、(1)见解析;(2),见解析
相关试卷
这是一份2023-2024学年武汉广雅初级中学九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,方程的根是等内容,欢迎下载使用。
这是一份辽宁省辽河油田欢喜岭第二初级中学2023-2024学年九上数学期末教学质量检测试题含答案,共10页。试卷主要包含了已知2a=3b等内容,欢迎下载使用。
这是一份湖北省武汉市梅苑中学2023-2024学年九上数学期末教学质量检测试题含答案,共8页。