


湖北省武汉市蔡甸区2024年九上数学开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为( )
A.4B.16C.2D.4
2、(4分)已知是完全平方式,则的值为( )
A.6B.C.12D.
3、(4分)如图,为的平分线,于,,,则点到射线的距离为( )
A.2B.3C.4D.5
4、(4分)已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为( )
A.7,6B.7,4C.5,4D.以上都不对
5、(4分)下列所给图形中,既是中心对称图形,又是轴对称图形的是( )
A.B.C.D.
6、(4分)如果a>b,下列各式中不正确的是( )
A.a-3>b-3 B.C.2a>2bD.-2a+5<-2b+5
7、(4分)已知是关于的方程的两个实数根,且满足,则的值为( )
A.3B.3或C.2D.0或2
8、(4分)如图,在△ABC中,AB=AC,∠A=36°,以点B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD的度数是( )
A.18°B.36°C.72°D.108°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点A是函数的图像上的一点,过点A作轴,垂足为点B,点C为x轴上的一点,连接AC,BC,若△ABC的面积为4,则K的值为_______
10、(4分)观察下列各式,并回答下列问题:
①;②;③;……
(1)写出第④个等式:________;
(2)将你猜想到的规律用含自然数的代数式表示出来,并证明你的猜想.
11、(4分)一个多边形的内角和是它外角和的1.5倍,那么这个多边形是______边形.
12、(4分)请观察一列分式:﹣,﹣,…则第11个分式为_____.
13、(4分)把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在直角坐标系中,点在第一象限,轴于,轴于,,,有一反比例函数图象刚好过点.
(1)分别求出过点的反比例函数和过,两点的一次函数的函数表达式;
(2)直线轴,并从轴出发,以每秒个单位长度的速度向轴正方向运动,交反比例函数图象于点,交于点,交直线于点,当直线运动到经过点时,停止运动.设运动时间为(秒).
①问:是否存在的值,使四边形为平行四边形?若存在,求出的值;若不存在,说明理由;
②若直线从轴出发的同时,有一动点从点出发,沿射线方向,以每秒个单位长度的速度运动.是否存在的值,使以点,,,为顶点的四边形为平行四边形;若存在,求出的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.
15、(8分)如图,分别延长平行四边形的边、至点、点,连接、,其中.
求证:四边形为平行四边形
16、(8分)限速安全驾,文明靠大家,根据道路管理条例规定,在某段笔直的公路L上行驶的车辆,限速60千米时,一观测点M到公路L的距离MN为30米,现测得一辆汽车从A点到B点所用时间为5秒,已知观测点M到A,B两点的距离分别为50米、34米,通过计算判断此车是否超速.
17、(10分) (﹣)2(+)+|2﹣|﹣
18、(10分)如图,在中,是它的一条对角线,过、两点分别作,,、为垂足.求证:四边形是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,线段AB的长为4,P为线段AB上的一个动点,△PAD和△PBC都是等腰直角三角形,且∠ADP=∠PCB=90°,则CD长的最小值是____.
20、(4分)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形,其中,正确的有__________.(填序号)
21、(4分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.
22、(4分)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.
23、(4分)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校对各个班级教室卫生情况的考评包括以下几项:门窗,桌椅,地面,一天,两个班级的各项卫生成绩分别如表:(单位:分)
(1)两个班的平均得分分别是多少;
(2)按学校的考评要求,将黑板、门窗、桌椅、地面这三项得分依次按25%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由.
25、(10分)计算:(1)
(2)(﹣1)2﹣(﹣)(+)
26、(12分)某校学生会向全校名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为 人,图中的值是 .
(2)补全图2的统计图.
(3)求本次调查获取的样本数据的平均数、众数和中位数;
(4)根据样本数据,估计该校本次活动捐款金额为元的学生人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
∵∠C=90°,CD⊥AB,
∴∠ADC=∠CDB=90°, ∠CAD+∠CBD=90°,
∴∠CAD+∠ACD=90°,
∴∠ACD=∠CBD,
∴△ADC∽△CDB,
∴,
∵AD=8,DB=2
∴CD=1.
故选A
2、D
【解析】
根据完全平方式的结构特征,即可求出m的值.
【详解】
解:∵是完全平方式,
∴;
故选择:D.
此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.
3、B
【解析】
过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等,可得CF=CM,进而可得答案.
【详解】
解:如图,过C作CF⊥AO于F
∵OC为∠AOB的平分线,CM⊥OB,
∴CM=CF,
∵OC=5,OM=4,
∴CM=3,
∴CF=3,
故选:B.
此题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.
4、B
【解析】
根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.
【详解】
解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,
∴(a-2+b-2+c-2)=3,
∴数据a-2,b-2,c-2的平均数是3;
∵数据a,b,c的方差为4,
∴[(a-5)2+(b-5)2+(c-5)2]=4,
∴a-2,b-2,c-2的方差=[(a-2-3)2+(b-2-3)2+(c--2-3)2]
= [(a-5)2+(b-5)2+(c-5)2]=4,
故选B.
本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.
5、C
【解析】
利用中心对称图形与轴对称图形定义判断即可.
【详解】
解:A是中心对称图形,不是轴对称图形,故此选项不符合题意;
B不是中心对称图形,是轴对称图形,故此选项不符合题意;
C是中心对称图形,也是轴对称图形,故正确;
D是中心对称图形,不是轴对称图形,故此选项不符合题意
故选:C
此题考查了中心对称图形,轴对称图形,熟练掌握各自的性质是解本题的关键.
6、B
【解析】
根据不等式两边加上(或减去)同一个数,不等号方向不变对A进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B、D进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C进行判断.
【详解】
A选项:a>b,则a-3>b-3,所以A选项的结论正确;
B选项:a>b,则-a<-b,所以B选项的结论错误;
C选项:a>b,则2a>2b,所以C选项的结论正确;
D选项:a>b,则-2a<-2b,所以D选项的结论正确.
故选:B.
考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.
7、A
【解析】
根据根与系数的关系得出m+n=-(2b+3),mn=b2,变形后代入,求出b值,再根据根的判别式判断即可.
【详解】
解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,
∴m+n=-(2b+3),mn=b2,
∵+1=- ,
∴+=-1,
∴=-1,
∴=-1,
解得:b=3或-1,
当b=3时,方程为x2+9x+9=0,此方程有解;
当b=-1时,方程为x2+x+1=0,△=12-4×1×1=-3<0,此时方程无解,
所以b=3,
故选:A.
本题考查一元二次方程的解,根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键.
8、B
【解析】
由AB=AC,知道顶∠A的度数,就可以知道底∠C的度数,还知道BC=BD,就可以知道∠CDB的度数,在利用三角形的外角∠A+∠ABD=∠CDB,就可以求出ABD的度数
【详解】
解,∵AB=AC,∠A=36°,∴∠C=72°,又∵BC=BD,∴∠BDC=∠C=72°,
又∵∠A+∠ABD=∠BDC ∴∠ABD=∠BDC-∠A=72°-36°=36°
本题主要考查等腰三角形的性质,结合角度的关系进行求解
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到=4,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图,
∵轴,
∴OC∥AB,
∴S△OAB=S△ABC=4,
而S△OAB=,
∴=4,
∵k<0,
∴k=-1.
故答案为:-1.
本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
10、(1);(2)猜想:
【解析】
(1)此题应先观察列举出的式子,可找出它们的一般规律,直接写出第④个等式即可;
(2)找出它们的一般规律,用含有n的式子表示出来,证明时,将等式左边被开方数进行通分,把被开方数的分子开方即可.
【详解】
(1)1)观察列举出的式子,可找出它们的一般规律,直接写出第④个等式:
故答案为:
(2)猜想:用含自然数的代数式可表示为:
证明:左边右边,所以猜想正确.
本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.
11、五
【解析】
设多边形边数为n.
则360°×1.5=(n−2)⋅180°,
解得n=5.
故选C.
点睛:多边形的外角和是360度,多边形的内角和是它的外角和的1.5倍,则多边形的内角和是540度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.
12、
【解析】
分母中y的次数是分式的序次的2倍加1,分子中x的次数与序次一致,分式的序次为奇数时,分式的符合为负,分式的序次为偶数时,分式的符合为正,由此即可解决问题.
【详解】
根据规律可知:则第11个分式为﹣.
故答案为﹣.
本题考查了分式的定义:叫分式,其中A、B都是整式,并且B中含有字母.也考查了从特殊到一般的规律的探究.
13、y=﹣x+1
【解析】
根据“上加下减”的平移规律可直接求得答案.
【详解】
解:把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为y=﹣x﹣1+2,即y=﹣x+1.
故答案为:y=﹣x+1.
本题考查一次函数图象与几何变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.
三、解答题(本大题共5个小题,共48分)
14、(1), ;(2)①不存在,理由详见解析;②存在,
【解析】
(1)先确定A、B、C的坐标,然后用待定系数法解答即可;
(2)①可用t的代数式表示DF,然后根据DF=BC求出t的值,得到DF与CB重合,因而不存在t,使得四边形DFBC为平行四边形;②可分两种情况(点Q在线段BC上和在线段BC的延长线上)讨论,由于DE∥QC,要使以点D、E、Q、C为顶点的四边形为平行四边形,只需DE=QC,只需将DE、QC分别用的式子表示,再求出t即可解答.
【详解】
解:(1)由题意得,,,
反比例函数为,一次函数为:.
(2)①不存在.
轴,轴,
.
又四边形是平行四边形,
.
设,则,
,.
此时与重合,不符合题意,
不存在.
②存在.当时,;当时,由,,得.
由,.得.
当时,四边形为平行四边形.
.
,
(舍)
当时,四边形为平行四边形.
又且,
为矩形.
本题主要考查了用待定系数法求反比例函数和一次函数的解析式以及平行四边形的判定、解方程、根的判别式等知识,在解答以点D、E、Q、C为顶点的四边形的四个顶点的顺序不确定,需要分情况讨论是解答本题的关键.
15、证明见解析.
【解析】
由平行四边形的性质可得AB=CD,AD=BC,∠ADC=∠ABC,由“AAS”可证△ADF≌△CBE,可得AF=CE,DF=BE,可得AE=CF,则可得结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠ADC=∠ABC,
∴∠ADF=∠CBE,且∠E=∠F,AD=BC,
∴△ADF≌△CBE(AAS),
∴AF=CE,DF=BE,
∴AB+BE=CD+DF,
∴AE=CF,且AF=CE,
∴四边形AECF是平行四边形.
本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练运用平行四边形的判定和性质是本题的关键.
16、此车没有超速
【解析】
在Rt△AMN中根据勾股定理求出AN,在Rt△BMN中根据勾股定理求出BN,由AN+NB求出AB的长,根据路程除以时间得到速度,即可做出判断.
【详解】
解:在中,,,
米,
在中,,,
米,
米,
汽车从A到B的平均速度为米秒,
米秒千米时千米时,
此车没有超速.
本题考核知识点:勾股定理的应用. 解题关键点:把问题转化为在直角三角形中的问题.
17、﹣1.
【解析】
首先利用平方差公式化简,进而利用二次根式混合运算法则计算得出答案.
【详解】
原式=(5﹣3)(﹣)+1﹣1﹣
=1﹣1+1﹣1﹣
=﹣1.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
18、详见解析
【解析】
由题目条件推出,推出;由,推出根据有一组对边平行且相等的四边形是平行四边形,可以得出结论.
【详解】
证明:∵四边形为平行四边形,
∴,.
∵.
∵,,
∴.
∴,.
∴.
∴四边形是平行四边形.
本题考查了平行四边形的判定,掌握平行四边形的判定定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.
【解析】
设AP=x,PB=4,由等腰直角三角形得到DP与PC,然后在直角三角形DPC中利用勾股定理列出CD与x的关系,列出函数解题即可
【详解】
设AP=x,PB=4,由等腰直角三角形性质可得到DP=,CP=,又易知三角形DPC为直角三角形,所以DC2=DP2+PC2==,利用二次函数性质得到DC2的最小值为8,所以DC的最小值为,故填
本题主要考察等腰直角三角形的性质与二次函数的性质,属于中等难度题,本题关键在于能用x表示出DC的长度
20、①②③④
【解析】
①∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形;故①正确;
②若∠BAC=90°,则平行四边形AEDF是矩形;故②正确;
③若AD平分∠BAC,则DE=DF;所以平行四边形是菱形;故③正确;
④若AD⊥BC,AB=AC;根据等腰三角形三线合一的性质知:DA平分∠BAC,由③知:此时平行四边形AEDF是菱形;故④正确;所以正确的结论是①②③④.
21、-1
【解析】
设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.
【详解】
设点A(x,),则B(,),
∴AB=x-,
则(x-)•=5,
k=-1.
故答案为:-1.
本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.
22、10
【解析】
(36-20)÷3=2(cm).
设放入x小球有水溢出,由题意得
2x+30>49, ∴x>9.5, ∴放入10小球有水溢出.
23、
【解析】
由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.
【详解】
∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,
∴小军能一次打开该旅行箱的概率是:.
故答案是:.
解题关键是根据概率公式(如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=).
二、解答题(本大题共3个小题,共30分)
24、(1)一班的平均得分90,二班的平均得分90(2)一班的卫生成绩高.
【解析】
(1)、(2)利用平均数的计算方法,先求出所有数据的和,然后除以数据的总个数即可求出答案.
【详解】
解:(1)一班的平均得分=(95+85+90)÷3=90,
二班的平均得分=(90+95+85)÷3=90,
(2)一班的加权平均成绩=85×25%+90×35%+95×40%=90.75,
二班的加权平均成绩=95×25%+85×35%+90×40%=89.5,
所以一班的卫生成绩高.
本题考查的是平均数和加权平均数的求法,关键是利用平均数和加权平均数的计算方法解答.
25、(1);(2)
【解析】
(1)根据绝对值的意义、有理数的乘方、二次根式的性质、负整数指数幂的意义化简,进而求和即可;
(2)根据二次根式混合运算法则计算即可.
【详解】
(1)原式==;
(2)原式===.
本题考查了实数的混合运算.熟练掌握相关法则是解答本题的关键.
26、(1)、;(2)详见解析;(3)平均数:16;众数:10;中位数:15;(4)608.
【解析】
(1)由元的人数及其所占百分比可得总人数,用元人数除以总人数可得m的值;
(2)总人数乘以元对应百分比可得其人数,据此可补全图形;
(3)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;
(4)根据统计图中的数据可以估计该校本次活动捐款金额为元的学生人数.
【详解】
(1)本次接受随机抽样调查的学生人数为人.
∵ .
故答案为、;
(2)元的人数为,补全图形如下:
(3)本次调查获取的样本数据的平均数是: (元),本次调查获取的样本数据的众数是:元,本次调查获取的样本数据的中位数是:元;
(4)估计该校本次活动捐款金额为元的学生人数为人.
本题考查了条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.
题号
一
二
三
四
五
总分
得分
批阅人
门窗
桌椅
地面
一班
85
90
95
二班
95
85
90
2025届湖北省宜昌市数学九上开学达标检测模拟试题【含答案】: 这是一份2025届湖北省宜昌市数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖北省咸宁市名校九上数学开学达标检测模拟试题【含答案】: 这是一份2025届湖北省咸宁市名校九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖北省武汉市求新联盟联考数学九上开学达标测试试题【含答案】: 这是一份2025届湖北省武汉市求新联盟联考数学九上开学达标测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。