2024年陕西省西安市高新第二初级中学九上数学开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=5x-4的图象经过( ).
A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限
2、(4分)下列条件中,不能判定一个四边形是平行四边形的是( )
A.两组对边分别平行B.两组对边分别相等
C.两组对角分别相等D.一组对边平行且另一组对边相等
3、(4分)如图,丝带重叠的部分一定是( )
A.菱形B.矩形C.正方形D.都有可能
4、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是( )
A.甲B.乙C.丙D.丁
5、(4分)如图①,正方形中,点以每秒2cm的速度从点出发,沿的路径运动,到点停止.过点作与边(或边)交于点的长度与点的运动时间(秒)的函数图象如图②所示.当点运动3秒时,的面积为( )
A.B.C.D.
6、(4分)下列选项中,矩形具有的性质是( )
A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角
7、(4分)已知y=(k-3)x|k|-2+2是一次函数,那么k的值为( )
A.B.3C.D.无法确定
8、(4分)已知,则( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知分式,当x=1时,分式无意义,则a=___________.
10、(4分)若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a,b,c的方差是___.
11、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)
12、(4分)如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角的度数应为______或______.
13、(4分)若直角三角形的斜边长为6,则这个直角三角形斜边的中线长________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知一次函数y=x+b的图象与反比例函数y= (x<0)的图象交于点A(−1,2)和点B
(1)求k的值及一次函数解析式;
(2)点A与点A′关于y轴对称,则点A′的坐标是___;
(3)在y轴上确定一点C,使△ABC的周长最小,求点C的坐标。
15、(8分)(1)下列关于反比例函数y=的性质,描述正确的有_____。(填所有描述正确的选项)
A. y随x的增大而减小
B. 图像关于原点中心对称
C. 图像关于直线y=x成轴对称
D. 把双曲线y=绕原点逆时针旋转90°可以得到双曲线y=-
(2)如图,直线AB、CD经过原点且与双曲线y=分别交于点A、B、C、D,点A、C的横坐标分别为m,n(m>n>0),连接AC、CB、BD、DA。
①判断四边形ACBD的形状,并说明理由;
②当m、n满足怎样的数量关系时,四边形ACBD是矩形?请直接写出结论;
③若点A的横坐标m=3,四边形ACBD的面积为S,求S与n之间的函数表达式。
16、(8分)解不等式:
17、(10分)一种五米种子的价格为5元/kg,A如果一次购买2kg以上的种子,超过2kg部分的种子价格打八折.
(1)填写表:
(2)写出付款金额关于购买量的函数解析式,并画出函数图象.
18、(10分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果有意义,那么x的取值范围是_____.
20、(4分)若一直角三角形的两直角边长为,1,则斜边长为_____.
21、(4分)如图,在中,,点,,分别是,,的中点,若,则线段的长是__________.
22、(4分)多项式因式分解后有一个因式为,则的值为_____.
23、(4分)分解因式:______________。
二、解答题(本大题共3个小题,共30分)
24、(8分)将平行四边形纸片按如图方式折叠,使点与重合,点落到处,折痕为.
(1)求证:;
(2)连结,判断四边形是什么特殊四边形?证明你的结论.
25、(10分)如图,在正方形ABCD中,P是CD边上一点,DF⊥AP,BE⊥AP.
求证:AE=DF.
26、(12分)如图,中,延长到点,延长到点,使,连接、.
求证:四边形是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数的性质结合k、b的值即可确定答案.
【详解】
∵k=5>0,
∴一次函数y=5x-4的图象经过第一、三象限,
∵b=-4<0,
∴一次函数y=5x-4的图象与y轴的交点在x轴下方,
∴一次函数y=5x-4的图象经过第一、三、四象限,
故选C.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理 直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
2、D
【解析】
根据平行四边形的判定方法一一判断即可
【详解】
解:A、两组对边分别平行,可判定该四边形是平行四边形,故A不符合题意;
B、两组对角分别相等,可判定该四边形是平行四边形,故B不符合题意;
C、对角线互相平分,可判定该四边形是平行四边形,故C不符合题意;
B、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故D符合题意.
故选D.
此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
3、A
【解析】
首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.
【详解】
解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,
所以AB∥CD,AD∥BC,AE=AF.
∴四边形ABCD是平行四边形.
∵S▱ABCD=BC•AE=CD•AF.
∴BC=CD,
∴四边形ABCD是菱形.
故选:A.
本题考查了平行四边形的判定和性质以及菱形的判定和性质,利用平行四边形的面积公式得到一组邻边相等是解题关键.
4、D
【解析】
解:∵S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,∴S甲2>S乙2>S丙2>S丁2,故选D.
5、B
【解析】
由图②知,运动2秒时,,距离最长,再根据运动速度乘以时间求得路程,可得点P的位置,根据线段的和差,可得CP的长,最后由即可求得答案.
【详解】
由图②知,运动2秒时,,的值最大,
此时,点P与点B重合,则,
∵四边形为正方形,
则,
∴,
由题可得:点P运动3秒时,则P点运动了6cm,
此时,点P在BC上,如图:
∴cm,
∴点P为BC的中点,
∵PQ∥BD,
∴点Q为DC的中点,
∴
.
故选:B.
本题考查了动点问题的函数图象以及平行线的性质、正方形的性质、三角形中位线定理,由图②知,运动2秒时,,求得正方形的边长是解题的关键.
6、C
【解析】
根据矩形的性质逐项分析即可.
【详解】
A. 四边相等是菱形的性质,不是矩形的性质,故不符合题意;
B. 对角线互相垂直是菱形的性质,不是矩形的性质,故不符合题意;
C. 对角线相等是是矩形的性质,故符合题意;
D. 每条对角线平分一组对角是菱形的性质,不是矩形的性质,故不符合题意;
故选C.
本题考查了矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分;
7、C
【解析】
根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.
【详解】
一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
所以|k|-2=1,
解得:k=±2,
因为k-2≠0,所以k≠2,
即k=-2.
故选:C.
本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
8、B
【解析】
先利用二次式的乘法法则与二次根式的性质求出m=2= ,再利用夹值法即可求出m的范围.
【详解】
解:=2=,
∵25<28<36,
∴.
故选:B.
本题考查了二次根式的运算,二次根式的性质,估算无理数的大小,将m化简为是解题的键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
把x=1代入分式,根据分式无意义得出关于a的方程,求出即可
【详解】
解:把x=1代入得:
,
此时分式无意义,
∴a-1=0,
解得a=1.
故答案为:1.
本题考查了分式无意义的条件,能得出关于a的方程是解此题的关键.
10、1.
【解析】
先确定出a,b,c后,根据方差的公式计算a,b,c的方差.
【详解】
解:平均数;
中位数;
众数;
,b,c的方差.
故答案是:1.
考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.
11、
【解析】
连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.
【详解】
解:连接AC、CF,
在正方形ABCD和正方形CEFG中,
∠ACG=45°,∠FCG=45°,
∴∠ACF=90°,
∵BC=a,CE=b,
∴AC=a,CF=b,
由勾股定理得,AF==,
∵∠ACF=90°,H是AF的中点,
∴CH=,
故答案为:.
本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
12、
【解析】
根据翻折变换的性质及菱形的判定进行分析从而得到最后答案.
【详解】
解:一张长方形纸片对折两次后,剪下一个角,折痕为对角线,
因为折痕相互垂直平分,所以四边形是菱形,
而菱形的两条对角线分别是两组对角的平分线,
所以当剪口线与折痕角成30°时,其中有内角为2×30°=60°,可以得到一个锐角为的菱形.
或角等于60°,内角分别为120°、60°、120°、60°,也可以得到一个锐角为的菱形.
故答案为:30°或60°.
本题考查了折叠问题,同时考查了菱形的判定及性质,以及学生的动手操作能力.
13、1
【解析】
根据直角三角形的性质直接求解.
【详解】
解:直角三角形斜边长为6,
这个直角三角形斜边上的中线长为1.
故答案为:1.
本题考查了直角三角形的性质,解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.
三、解答题(本大题共5个小题,共48分)
14、(1)k=−2,y=x+,;(2)(1,2);(3)(0,)
【解析】
(1)把A(-1,2)代入两个解析式即可得到结论;
(2)根据关于y轴对称的点的特点即可得到结论;
(3)作点A关于y轴对称A′,连接AA′交y轴于C,则△ABC的周长最小,解方程组得到B(-4, ),得到A′B的解析式为y=,即可得到结论.
【详解】
(1)∵一次函数y=x+b的图象与反比例函数y= (x<0)的图象交于点A(−1,2),
把A(−1,2)代入两个解析式得:2=×(−1)+b,2=−k,
解得:b=,k=−2,
∴一次函数解析式为:y=x+,反比例函数解析式为y=−;
(2)∵点A(−1,2)与点A′关于y轴对称,
∴A′(1,2),
故答案为:(1,2);
(3)作点A关于y轴对称A′,连接AA′交y轴于C,则△ABC的周长最小,
由(2)知A′(1,2),
解方程组 ,
解得: , ,
∴B(−4, ),
设A′B的解析式为y=ax+c,
把A′(1,2),B(−4, )代入得 ,
解得: ,
∴A′B的解析式为y= ,令x=0,
∴y= ,
∴C(0,)
此题考查轴对称-最短路线问题,反比例函数与一次函数的交点问题,解题关键在于将已知点代入解析式
15、(1)ABCD;(2)①见解析;②∴当时,四边形ACBD是矩形;
③S=
【解析】
(1)由反比例函数的性质可得.
(2)①根据对称的性质可得四边形ABCD的对角线互相平分,则一定是平行四边形;②由四边形ACBD是矩形时:OA=OC得出 利用长度公式得 可得关系式:整理化简即可。
③可得A(3,2)进而求出 的表达式,代入S=可得S与n的关系式.
【详解】
解(1)ABCD均正确
(2)①根据对称性可知:OA=OB,OC=OD,则四边形ACBD是平行四边形。
②当四边形ACBD是矩形时:OA=OC
∴
∵点A、C的横坐标分别为m,n
∴
∴
∴
∴
∵m>n>0
∴
∴当时,四边形ACBD是矩形
③∵
当m=3时,A(3,2)
∴
=
=
=
∴四边形ACBD的面积为S=
本题考查了反比例函数及几何图形的综合,掌握反比例函数的性质是解题的关键.
16、.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
,
,
,
.
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
17、(1)2.5、5、7.5、10、12、14、16、18;(2)
【解析】
(1)根据题意可以将表格中的数据补充完整;
(2)根据题意和表格中的数据可以写出相应的函数解析式和画出相应的函数图象.
【详解】
解:(1)设购买种子为xkg,付款金额为y元,
当x=0.5时,y=5×0.5=2.5,
当x=1时,y=5×1=5,
当x=1.5时,y=5×1.5=7.5,
当x=2时,y=5×2=10,
当x=2.5时,y=5×2+(2.5﹣2)×5×0.8=12,
当x=3时,y=5×2+(3﹣2)×5×0.8=14,
当x=3.5时,y=5×2+(3.5﹣2)×5×0.8=16,
当x=4时,y=5×2+(4﹣2)×5×0.8=18,
故答案为2.5、5、7.5、10、12、14、16、18;
(2)由题意可得,
当0≤x≤2时,y=5x,
当x>2时,y=5×2+(x﹣2)×5×0.8=4x+2,
即付款金额关于购买量的函数解析式是:,
相应的函数图象,如右图所示.
本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,画出相应的函数图象.
18、 (1)中位数为150分钟,平均数为151分钟.
(2)见解析
【解析】
(1)根据中位数和平均数的概念求解;
(2)根据(1)求得的中位数,与147进行比较,然后推断该选手的成绩.
【详解】
解:(1)将这组数据按照从小到大的顺序排列为:125,134,140,143,146,148,152,155,162,164,168,175,
则中位数为:
平均数为:
(2)由(1)可得中位数为150分钟,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>1
【解析】
根据二次根式有意义的条件可得 >1,再根据分式分母≠1可得x>1.
【详解】
由题意得:x>1,
故答案为:x>1
此题考查二次根式有意义的条件,掌握其定义是解题关键
20、1
【解析】
根据勾股定理计算,得到答案.
【详解】
解:斜边长==1,
故答案为:1.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
21、1.
【解析】
先根据直角三角形斜边上的中线等于斜边的一半求出AB的长,再根据三角形中位线定理求出EF的长即可.
【详解】
中,,D是AB的中点,
即CD是直角三角形斜边上的中线,
,
又分别是的中点,
∴是的中位线,
,
故答案为:1.
此题主要考查了直角三角形的性质以及三角形中位线定理,熟练掌握它们的性质是解答此题的关键.
22、5
【解析】
根据十字相乘的进行因式分解即可得出答案.
【详解】
根据题意可得:
∴
∴k=5
故答案为5.
本题考查的是因式分解,难度适中,需要熟练掌握因式分解的步骤.
23、4x(x+1)(x-1)
【解析】
4x3-4x=4x(x2-1)=4x(x+1)(x-1).
故答案为4x(x+1)(x-1).
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)四边形AECF是菱形.证明见解析.
【解析】
(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠1,从而利用ASA判定△ABE≌△AD′F;
(2)四边形AECF是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.
【详解】
解:(1)由折叠可知:∠D=∠D′,CD=AD′,
∠C=∠D′AE.
∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=CD,∠C=∠BAD.
∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,
即∠1+∠2=∠2+∠1.
∴∠1=∠1.
在△ABE和△AD′F中
∵
∴△ABE≌△AD′F(ASA).
(2)四边形AECF是菱形.
证明:由折叠可知:AE=EC,∠4=∠2.
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠2=∠3.
∴∠4=∠3.
∴AF=AE.
∵AE=EC,
∴AF=EC.
又∵AF∥EC,
∴四边形AECF是平行四边形.
又∵AF=AE,
∴平行四边形AECF是菱形.
考点:1.全等三角形的判定;2.菱形的判定.
25、详见解析
【解析】
根据正方形的性质可得AB=AD,∠BAD=90°,再根据∠AEB=∠AFD=90°,∠ABE+∠BAE=90°,得到∠ABE=∠DAF,然后通过“角角边”证得△ABE ≌△ADF,则可得AE=DF.
【详解】
证明∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠DAF+∠BAE=90°,
又∵DF⊥AP,BE⊥AP,
∴∠AEB=∠AFD=90°,
∴∠ABE+∠BAE=90°,
∴∠ABE=∠DAF,
在△ABE 与△ADF中,
,
∴△ABE ≌△ADF(AAS),
∴AE=DF(全等三角形对应边相等).
26、证明见解析
【解析】
根据平行四边形性质得出AD//BC,AD=BC,求出AF=EC,AF//EC,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可
【详解】
证明:∵四边形是平行四边形,
∴且,
又∵,
∴,
,
∴四边形是平行四边形.
此题主要考查平行四边形的判定与性质,解题关键在于掌握平行四边形的性质及定理
题号
一
二
三
四
五
总分
得分
购买量/kg
0.5
1
1.5
2
2.5
3
3.5
4
…
付款金额/元
陕西省西安市高新逸翠园初级中学2024-2025学年九年级上学期开学考试数学试题: 这是一份陕西省西安市高新逸翠园初级中学2024-2025学年九年级上学期开学考试数学试题,共8页。
陕西省西安市高新第二初级中学2023-2024学年九年级下学期开学考试数学试题: 这是一份陕西省西安市高新第二初级中学2023-2024学年九年级下学期开学考试数学试题,共27页。试卷主要包含了 《清朝野史大观·清代述异》称, 已知抛物线等内容,欢迎下载使用。
陕西省西安市高新第二初级中学2023-2024学年+下学期开学考试九年级数学试题: 这是一份陕西省西安市高新第二初级中学2023-2024学年+下学期开学考试九年级数学试题,共6页。