2024年天津市南开区复兴中学数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平行四边形ABCD中,若∠A+∠C=260°,则∠D的度数为( )
A.120°B.100°C.50°D.130°
2、(4分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是( )
A.3B.4C.5D.6
3、(4分)如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是( )
A.AO=ODB.EF=ADC.S△AEO=S△AOFD.S△ABC=2S△AEF
4、(4分)某居民小区10户家庭5月份的用水情况统计结果如表所示:这10户家庭的月平均用水量是( )
A.2m3 B.3.2m3 C.5.8m3 D.6.4m3
5、(4分)在平行四边形中,已知,,则它的周长是( )
A.8B.10C.12D.16
6、(4分)下列各点中,不在函数 的图象上的点是( )
A.(3,4) B.(﹣2,﹣6) C.(﹣2,6) D.(﹣3,﹣4)
7、(4分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:
要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )
A.甲B.乙C.丙D.丁
8、(4分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )
A.2cmB.3cmC.4cmD.5cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为______.
10、(4分)已知中,,则的度数是_______度.
11、(4分)一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.
12、(4分)若a2﹣5ab﹣b2=0,则的值为_____.
13、(4分)在直角ΔABC中,∠BAC=90°,AC=3,∠B=30°,点D在BC上,若ΔABD为等腰三角形,则BD=___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校初中部三个年级共挑选名学生进行跳绳测试,其中七年级人,八年级人,九年级人,体育老师在测试后对测试成绩进行整理,得到下面统计图表.
(1)表格中的落在 组(填序号);
①; ②;③;④;⑤;⑥;⑦
(2)求这名学生的平均成绩;
(3)在本次测试中,八年级与九年级都只有位学生跳下,判断这两位学生成绩在自己所在年级参加测试学生中的排名,谁更考前?请简要说明理由.
15、(8分)如图,在Rt△ABC中,∠C=90°,∠A=45°,AC=10cm,点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,同时点E从点B出发沿BA方向以cm/s的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是t(0<1≤10)s.过点E作EF⊥BC于点F,连接DE,DE.
(1)用含t的式子填空:BE=________ cm ,CD=________ cm.
(2)试说明,无论t为何值,四边形ADEF都是平行四边形;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
16、(8分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.
(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)
(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
(1)求证:BE=FG.
(2)连结CM,若CM=1,则FG的长为 .
(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为 .
17、(10分)在直角坐标系中,正方形OABC的边长为8,连结OB,P为OB的中点.
(1)直接写出点B的坐标B( , )
(2)点D从B点出发,以每秒1个单位长度的速度在线段BC上向终点C运动,连结PD,作PD⊥PE,交OC于点E,连结DE.设点D的运动时间为秒.
①点D在运动过程中,∠PED的大小是否发生变化?如果变化,请说明理由如果不变,求出∠PED的度数
②连结PC,当PC将△PDE分成的两部分面积之比为1:2时,求的值.
18、(10分)如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)我市某一周每天的最低气温统计如下(单位:℃):﹣1,﹣4,6,0,﹣1,1,﹣1,则这组数据的众数为__________.
20、(4分)将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据_____.
21、(4分)如图中的数字都是按一定规律排列的,其中x的值是________.
22、(4分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是_____.
23、(4分)如图,在正方形的外侧,作等边,则的度数是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)黄连是重庆市石柱县的特产,近几年黄连的种植在石柱县脱贫攻坚战中发挥着重要的作用.今年6月,某药材公司与黄连种植户签订收购协议:收购5﹣6年期黄连和6年以上期黄连共1000千克,其中5﹣6年期的黄连收购价格为每千克240元,6年以上期的黄连收购价格为每千克200元
(1)若药材公司共支付黄连种植户224000元,那么药材公司收购的5﹣6年期黄连和6年以上期黄连各多少千克?
(2)预计今年10﹣12月黄连收割上市后,5﹣6年期黄连的售价为每千克280元,6年以上期黄连的售价为每千克250元;药材公司收购的5﹣6年期黄连的数量不少于6年以上期黄连数量的3倍,药材公司应收购5﹣6年期黄连多少千克才能使售完这批黄连后获得的利润最大,最大利润是多少?
25、(10分)把顺序连结四边形各边中点所得的四边形叫中点四边形。
(1)任意四边形的中点四边形是什么形状?为什么?
(2)符合什么条件的四边形,它的中点四边形是菱形?
(3)符合什么条件的四边形,它的中点四边形是矩形?
26、(12分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据平行四边形的对角相等、邻角互补的性质即可求解.
【详解】
∵四边形ABCD为平行四边形
∴∠A=∠C,∠A+∠D=180°,
∵∠A+∠C=260°,
∴∠A=∠C=130°,
∴∠D =180°-∠A=50° .
故选C.
本题考查了平行四边形的性质,熟练运用平行四边形的性质是解决问题的关键.
2、C
【解析】
在Rt△ABC中利用勾股定理可求出AC=1,设BE=a,则CE=8﹣a,根据折叠的性质可得出BE=FE=a,AF=AB=6,∠AFE=∠B=90°,进而可得出FC=2,在Rt△CEF中,利用勾股定理可得出关于a的一元二次方程,解之即可得出a值,将其代入8﹣a中即可得出线段CE的长度.
【详解】
解:在Rt△ABC中,AB=6,BC=8,
∴AC=1.
设BE=a,则CE=8﹣a,
根据翻折的性质可知,BE=FE=a,AF=AB=6,∠AFE=∠B=90°,
∴FC=2.
在Rt△CEF中,EF=a,CE=8﹣a,CF=2,
∴CE2=EF2+CF2,即(8﹣a)2=a2+22,
解得:a=3,
∴8﹣a=3.
故选:C.
本题考查了翻折变换、矩形的性质、勾股定理以及解一元二次方程,在Rt△CEF中,利用勾股定理找出关于a的一元二次方程是解题的关键.
3、D
【解析】
根据三角形中位线定理以及直角三角形斜边上的中线等于斜边的一半逐项分析即可.
【详解】
解:
∵EF是Rt△ABC的中位线,
∴EF BC ,
∵AD是斜边BC边上的中线,
∴AD=BC,
∴EF=AD,故选项B正确;
∵AE=BE,EO∥BD,
∴AO=OD,故选项A正确;
∵E,O,F,分别是AB,AD,AC中点,
∴EO=BD,OF=DC,
∵BD=CD,
∴OE=OF,
又∵EF∥BC,
∴S△AEO=S△AOF,故选项C正确;
∵EF∥BC,
∴△ABC∽△AEF,
∵EF是Rt△ABC的中位线,
∴S△ABC:S△AEF=4:1,
即S△ABC=4S△AEF≠2S△AEF,故选D错误,
故选:D.
本题考查了三角形中位线定理的运用、直角三角形斜边上的中线的性质以及全等三角形的判断和性质,证明EO,OF是三角形的中位线是解题的关键.
4、C
【解析】
把已知数据代入平均数公式求平均数即可.
【详解】
月平均用水量=
故答案为:C.
此题主要考查加权平均数的求解,解题的关键是熟知加权平均数的定义与公式.
5、D
【解析】
根据平行四边形的性质可得AB=CD=5,BC=AD=3,即可得周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD=5,BC=AD=3,
∴它的周长为:5×2+3×2=16,
故答案为:D
此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.
6、C
【解析】
将各选项的点逐一代入进行计算判断即可.
【详解】
A、当x=3时,y==4, 故(3,4)在函数图象上,正确,不符合题意;
B、 当x=-2时,y==-6, 故(-2,-6)在函数图象上,正确,不符合题意;
C、 当x=-2时,y==-6≠6, 故(-2,6)不在函数图象上,错误,符合题意;
D、当x=-3时,y==-4, 故(-3,-4)在函数图象上,正确,不符合题意;
故答案为:C.
本题考查反比例函数的图象,属于简单题,要注意计算细心.
7、B
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.
【详解】
解:∵3.6<7.4<8.1,
∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,
∵95>92,
∴乙同学最近几次数学考试成绩的平均数高,
∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.
故选B.
此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
8、A
【解析】
根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.
【详解】
根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.
主要考查了勾股定理解直角三角形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20°
【解析】
先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.
【详解】
∵将△ABC绕点A逆时针旋转140°,得到△ADE,
∴∠BAD=140°,AD=AB,
∵点B,C,D恰好在同一直线上,
∴△BAD是顶角为140°的等腰三角形,
∴∠B=∠BDA,
∴∠B= (180°−∠BAD)=20°,
故答案为:20°
此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形
10、100
【解析】
根据平行四边形对角相等的性质,即可得解.
【详解】
∵中,,
∴
故答案为100.
此题主要考查平行四边形的性质,熟练掌握,即可解题.
11、x>﹣3 x≤﹣
【解析】
当x>−3时,2x+6>0;
解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.
故答案为x>−3;x⩽﹣.
12、5
【解析】
由已知条件易得,,两者结合即可求得所求式子的值了.
【详解】
∵,
∴,
∵,
∴.
故答案为:5.
“能由已知条件得到和”是解答本题的关键.
13、3或
【解析】
分两种情况讨论即可:①BA=BD,②DA=DB.
【详解】
解:①如图:
当AD成为等腰△BAD的底时,BA=BD,∵∠BAC=90°,∠B=30°,AC=3,∴BC=2x3=6,AB=3,∴BD=BA=3;
②如图:
当AB成为等腰△DAB的底边时,DA=DB, 点D在AB的中垂线与斜边BC的交点处,
∴∠DAB=∠B=30°,∴∠ADC=∠B+∠DAB=60°, ∵∠C=90°-∠B=60°, ∴△ADC为等边三角形,∴BD=AD=3,
故答案为3或3.
本题考查了等腰三角形的性质及线段垂直平分线的性质,关键是灵活运用这些性质.
三、解答题(本大题共5个小题,共48分)
14、(1)④;(2)80;(3)八年级得分的那位同学名次较靠前,理由详见解析.
【解析】
(1)根据题意,七年级由40人,则中位数应该在第20和21个人取平均值,即可得到答案;
(2)利用加权平均数,即可求出100名学生的平均成绩;
(3)由题意,八九年级人数一样,则比较中位数,即可得到答案.
【详解】
解:根据直方图可知,七年级第20和第21个人都落在;
故答案为:④.
(2)这名学生的平均成绩为:
;
(3)八年级得分的那位同学名次较靠前,
理由如下:
依题意得:八年级和九年级被挑选的学生人数相同,分别把两个年级的成绩按从高到低排列,由两个年级的中位数可知,八年级跳下的学生在该年级排名中上,而八年级跳下的学生在该年级排名中下,八年级得分的那位同学名次较靠前.
本题考查了众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.
15、(1)(1)t ,10-t;(2)见解析;(3)满足条件的t的值为5s或s,理由见解析
【解析】
(1) 点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动 ,由路程=时间×速度,得AD=t, CD=10-t,; 点E从点B出发沿BA方向以 cm/s的速度向点A匀速运动,所以BE=t;
(2)因为 △ABC 是等腰直角三角形,得∠B=45°,结合BE= t,得EF=t, 又因为∠EFB和∠C都是直角相等, 得 AD∥EF, 根据一组对边平行且相等的四边形是平行四边形,证得四边形ADFE是平行四边形;
(3) ①当∠DEF=90°时,因为DF平分对角,四边形EFCD是正方形, 这时 AD=DE=CD =5,求得t=5;②当∠EDF=90°时, 由DF∥AE,两直线平行,内错角相等,得∠AED=∠EDF=90°,结合∠A=45°,AD= AE , 据此列式求得t值即可; ③当∠EFD=90°,点D、E、F在一条直线上,△DFE不存在.
【详解】
(1)由题意可得BE=tcm,CD=AC-AD=(10-t)cm,
故填:t ,10-t;
(2)解:如图2中
∵CA=CB,∠C=90°
∴∠A=∠B=45°,
∵EF⊥BC,
∴∠EFB=90°
∴∠FEB=∠B=45°
∴EF=BF
∵BE=t,
∴EF=BF=t
∴AD=EF
∵∠EFB=∠C=90°
∴AD∥EF,
∴四边形ADFE是平行四边形
(3)解:①如图3-1中,当∠DEF=90°时,四边形EFCD是正方形,此时AD=DE=CD,
∴t=10-t,∴t=5
②如图3-2中,当∠EDF=90°时,
∵DF∥AC,
∴∠AED=∠EDF=90°,
∵∠A=45°
∴AD=AE,
∴t= (10- t),
解得t=
③当∠EFD=90°,△DFE不存在
综上所述,满足条件的t的值为5s或s.
本题属于四边形综合题,考查了等腰直角三角形的性质、平行四边形的判定与性质、直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
16、(1)证明见解析;(1)1,2.
【解析】
【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;
探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;
(1)利用直角三角形的斜边的中线是斜边的一半,
应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.
【详解】感知:∵四边形ABCD是正方形,
∴AB=BC,∠BCE=∠ABC=20°,
∴∠ABE+∠CBE=20°,
∵AF⊥BE,
∴∠ABE+∠BAF=20°,
∴∠BAF=∠CBE,
在△ABF和△BCE中,
,
∴△ABF≌△BCE(ASA);
探究:(1)如图②,
过点G作GP⊥BC于P,
∵四边形ABCD是正方形,
∴AB=BC,∠A=∠ABC=20°,
∴四边形ABPG是矩形,
∴PG=AB,∴PG=BC,
同感知的方法得,∠PGF=∠CBE,
在△PGF和△CBE中,
,
∴△PGF≌△CBE(ASA),
∴BE=FG;
(1)由(1)知,FG=BE,
连接CM,
∵∠BCE=20°,点M是BE的中点,
∴BE=1CM=1,
∴FG=1,
故答案为:1.
应用:同探究(1)得,BE=1ME=1CM=6,
∴ME=3,
同探究(1)得,CG=BE=6,
∵BE⊥CG,
∴S四边形CEGM=CG×ME=×6×3=2,
故答案为:2.
【点睛】本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键.
17、(1)8,8;(2)①∠PED的大小不变,∠PED=45°;②t的值为:秒或秒.
【解析】
(1)根据正方形的边长为8和正方形的性质写出点B的坐标;
(2)①如图1,作辅助线,证明四边形PMCN是正方形,再证明△DPN≌△EPM(ASA),可得△DPE是等腰直角三角形,可得结论;
②分两种情况:当PC将△PDE分成的两部分面积之比为1:2时,即G是ED的三等分点,根据面积法可知:EC与CD的比为1:2或2:1,列方程可得结论.
【详解】
解:(1)∵正方形OABC的边长为8,
∴B(8,8);
故答案为:8,8;
(2)①∠PED的大小不变;理由如下:
作PM⊥OC于M,PN⊥CB于N,如图1所示:
∵四边形OABC是正方形,
∴OC⊥BC,
∴∠MCN=∠PMC=∠PNC=90°,
∴四边形PMCN是矩形,
∵P是OB的中点,
∴N、M分别是BC和OC的中点,
∴MC=NC,
∴矩形PMCN是正方形,
∴PM=PN,∠MPN=90°,
∵∠DPE=90°,
∴∠DPN=∠EPM,
∵∠PND=∠PME=90°,
∴△DPN≌△EPM(ASA),
∴PD=PE,
∴△DPE是等腰直角三角形,
∴∠PED=45°;
②如图2,作PM⊥OC于M,PN⊥CB于N,
若PC将△PDE的面积分成1:2的两部分,
设PC交DE于点G,则点G为DE的三等分点;
当点D到达中点之前时,如图2所示,CD=8-t,
由△DPN≌△EPM得:ME=DN=4-t,
∴EC=CM-ME=4-(4-t)=t,
∵点G为EF的三等分点,
∴或
∵CP平分∠OCB,
∴或2,
即CD=2CE或CE=2CD,
∴8-t=2t或t=2(8-t),
t=或(舍);
当点D越过中点N之后,如图3所示,CD=8-t,
由△DPN≌△EPM得:CD=8-t,DN=t-4
∴EC=CM+ME=4+(t-4)=t,
∵点G为EF的三等分点,
∴或
∵CP平分∠OCB,
∴或2,
即CD=2CE或CE=2CD,
∴8-t=2t或t=2(8-t),
t=(舍)或;
综上所述,当PC将△PED分成的两部分的面积之比为1:2时,t的值为:秒或秒.
本题是四边形综合题目,考查了正方形的性质、坐标与图形性质、三角形中位线定理、全等三角形的判定与性质、面积法等知识;本题综合性强,难度适中.
18、∠EBF=20°,∠FBC=40°.
【解析】
试题分析:在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.
解:在Rt△ABF中,∠A=70,CE,BF是两条高,
∴∠EBF=20°,∠ECA=20°,
又∵∠BCE=30°,
∴∠ACB=50°,
∴在Rt△BCF中∠FBC=40°.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
众数是一组数据中出现次数最多的数据.
【详解】
观察﹣1,﹣4,6,0,﹣1,1,﹣1
其中﹣1出现的次数最多,
故答案为: .
本题考查了众数的概念,解题的关键在于对众数的理解.
20、两组对边分別平行的四边形是平行四边形
【解析】
根据平行四边形的判定方法即可求解.
【详解】
解:∵两块相同的含有30°角的三角尺
∴AD=BC,AB=CD,∠ADB=∠DBC=90°,∠ABD=∠BDC=30°
∴AB∥CD,AD∥BC
∴四边形ABCD是平行四边形
依据为:两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形(写出一种即可)
故答案为两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形(写出一种即可)
此题主要考查平行四边形的的判定,解题的关键是熟知平行四边形的判定定理.
21、1
【解析】
根据已知图形得出m+1=n且m+n=19,求得m、n的值,再根据x=19n-m可得答案.
【详解】
解:由题意知,m+1=n且m+n=19,
∴m=9,n=10,
∴x=19×10-9=1,
故答案为:1.
本题主要考查图形及数的变化规律,解题的关键是通过观察图形分析总结出规律,再按规律求解.
22、x≤1
【解析】
根据图象的性质,当y≤0即图象在x轴下侧,x≤1.
【详解】
根据图象和数据可知,当y≤0即图象在x轴下侧,x≤1.
故答案为x≤1
本题考查一次函数的图象,考查学生的分析能力和读图能力.
23、
【解析】
先求出的度数,即可求出.
【详解】
解:由题意可得,,
故答案为:
本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)收购的5﹣6年期黄连600千克,6年以上期黄连400千克;(2)收购5﹣6年期黄连750千克,销售利润最大,最大利润是42500元.
【解析】
(1)根据题意列方程或方程组进行解答即可,
(2)先求出利润与销售量之间的函数关系式和自变量的取值范围,再根据函数的增减性确定何时利润最大.
【详解】
解:(1)设收购的5﹣6年期黄连x千克,则6年以上期黄连(1000﹣x)千克,由题意得:240x+200(1000﹣x)=224000,
解得:x=600,
当x=600时,1000﹣x=400,
答:收购的5﹣6年期黄连600千克,6年以上期黄连400千克,
(2)设收购的5﹣6年期黄连y千克,则6年以上期黄连(1000﹣y)千克,销售利润为z元,由题意得:
z=(280﹣240)y+(250﹣200)(1000﹣y)=﹣10y+50000,
z随y的增大而减小,
又∵y≥3(1000﹣y),
∴y≥750,
当y=750时,z最小=﹣7500+50000=42500元,
答:收购5﹣6年期黄连750千克,销售利润最大,最大利润是42500元.
考查一次函数的性质、一元一次方程等知识,正确列方程、求出函数表达式是解决问题的关键.
25、(1)平行四边形;理由见解析;(2)当原四边形的对角线相等时,它的中点四边形是菱形;(3)当原四边形的对角线互相垂直时,它的中点四边形是矩形.
【解析】
(1)连接BD、由点E、H分别为边AB、AD的中点,同理知FG∥BD、FG=BD,据此可得EH=FG、EH∥FG,即可得证;
(2)同理根据对角线相等,可知邻边相等,中点四边形是菱形;
(3)同理根据对角线互相垂直,可知有一个角是直角,中点四边形是矩形.
【详解】
(1)任意四边形的中点四边形是平行四边形,理由是:
如图1,连接BD,
∵点E、H分别为边AB、AD的中点,
∴EH∥BD、EH=BD,
∵点F、G分别为BC、DC的中点,
∴FG∥BD、FG=BD,
∴EH=FG、EH∥FG,
∴中点四边形EFGH是平行四边形;
(2)当原四边形的对角线相等时,它的中点四边形是菱形;
证明:与(1)同理:EH=FG=BD=AC=EF=HG,得它的中点四边形是菱形;
(3)当原四边形的对角线互相垂直时,它的中点四边形是矩形;
证明:与(1)同理:EH∥FG∥BD,AC∥EF∥HG,
∵AC⊥BD,
∴EH、FG分别与EF、HG垂直,
∴得它的中点四边形是矩形.
本题主要考查中点四边形的综合问题,解题的关键是熟练掌握三角形中位线定理、平行四边形和菱形的判定与性质.
26、(1),;(2)P,.
【解析】
试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(1,3).
把点A(1,3)代入反比例函数y=,
得:3=k,
∴反比例函数的表达式y=,
联立两个函数关系式成方程组得:,
解得:,或,
∴点B的坐标为(3,1).
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.
∵点B、D关于x轴对称,点B的坐标为(3,1),
∴点D的坐标为(3,- 1).
设直线AD的解析式为y=mx+n,
把A,D两点代入得:,
解得:,
∴直线AD的解析式为y=-2x+1.
令y=-2x+1中y=0,则-2x+1=0,
解得:x=,
∴点P的坐标为(,0).
S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
=.
考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
题号
一
二
三
四
五
总分
得分
月用水量/m3
4
5
6
8
9
户数
2
3
3
1
1
甲
乙
丙
丁
平均数(分)
92
95
95
92
方差
3.6
3.6
7.4
8.1
年级
平均成绩
中位数
众数
七年级
78.5
m
85
八年级
80
78
82
九年级
82
85
84
2024年西安市东仪中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年西安市东仪中学数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年上饶市重点中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年上饶市重点中学数学九上开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。