|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年天津市宝坻区第二中学数学九年级第一学期开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年天津市宝坻区第二中学数学九年级第一学期开学达标检测模拟试题【含答案】01
    2024-2025学年天津市宝坻区第二中学数学九年级第一学期开学达标检测模拟试题【含答案】02
    2024-2025学年天津市宝坻区第二中学数学九年级第一学期开学达标检测模拟试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年天津市宝坻区第二中学数学九年级第一学期开学达标检测模拟试题【含答案】

    展开
    这是一份2024-2025学年天津市宝坻区第二中学数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在同一直角坐标系中,将一次函数y=x﹣3(x>1)的图象,在直线x=2(横坐标为2的所有点构成该直线)的左侧部分沿直线x=2翻折,图象的其余部分保持不变,得到一个新图象.若关于x的函数y=2x+b的图象与此图象有两个公共点,则b的取值范围是( )
    A.8>b>5B.﹣8<b<﹣5C.﹣8≤b≤﹣5D.﹣8<b≤﹣5
    2、(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
    A.B.C.5D.4
    3、(4分)把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
    A.a=2,b=3B.a=-2,b=-3
    C.a=-2,b=3D.a=2,b=-3
    4、(4分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是( )
    A.4.5B.8C.10.5D.14
    5、(4分)在反比例函数 y  图象的每个象限内,y 随 x 的增大而减少,则 k 值可以是( )
    A.3B.2C.1D.﹣1
    6、(4分)如图,一次函数的图象与轴的交点坐标为,则下列说法正确的有( )
    ①随的增大而减小;②;③关于的方程的解为;④当时,.
    A.1个B.2个C.3个D.4个
    7、(4分)甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市.已知货车出发1小时后客车再出发,先到终点的车辆原地休息.在汽车行驶过程中,设两车之间的距离为s(千米),客车出发的时间为t(小时),它们之间的关系如图所示,则下列结论错误的是( )
    A.货车的速度是60千米/小时
    B.离开出发地后,两车第一次相遇时,距离出发地150千米
    C.货车从出发地到终点共用时7小时
    D.客车到达终点时,两车相距180千米
    8、(4分)当时,函数的值是( )
    A.-3B.-5C.-7D.-9
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.
    10、(4分)如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.
    11、(4分)若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.
    12、(4分)如图,点P在第二象限内,且点P在反比例函数图象上,PA⊥x轴于点A,若S△PAO的面积为3,则k的值为 .
    13、(4分)点 P(a,a-3)在第四象限,则a的取值范围是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分),,且,,求和的度数.
    15、(8分)如图1,在正方形ABCD中,点E、F分别是边BC、CD上的点,且CE=CF,连接AE,AF,取AE的中点M,EF的中点N,连接BM,MN.
    (1)请判断线段BM与MN的数量关系和位置关系,并予以证明.
    (2)如图2,若点E在CB的延长线上,点F在CD的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
    16、(8分)如图,点C,D在线段AB上,△PCD是等边三角形,△ACP∽△PDB,
    (1)请你说明CD2=AC•BD;
    (2)求∠APB的度数.
    17、(10分)已知:如图,在□ABCD中,点M、N分别是AB、CD的中点.求证:DM = BN.
    18、(10分)一个二次函数的图象经过三点.求这个二次函数的解析式并写出图象的开口方向、对称轴和顶点.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)平面直角坐标系中,点A在函数 (x>0)的图象上,点B在 (x<0)的图象上,设A的横坐标为a,B的横坐标为b,当|a|=|b|=5时,求△OAB的面积为____;
    20、(4分)满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____; ②_____.
    21、(4分)已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.
    22、(4分)如图,□OABC的顶点O,A的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为___.
    23、(4分)已知在同一坐标系中,某正比例函数与某反比例函数的图像交于 A,B 两点,若点 A 的坐标为(-1,4), 则点 B 的坐标为___.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆, 设租用甲种客车x辆.
    (1)用含x的式子填写下表:
    (2)给出最节省费用的租车方案,并求出最低费用.
    25、(10分)在平面直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.求a的值.
    26、(12分)如图,在正方形中,,点是边上的动点(含端点,),连结,以所在直线为对称轴作点的对称点,连结,,,,点,,分别是线段,,的中点,连结,.
    (1)求证:四边形是菱形;
    (2)若四边形的面积为,求的长;
    (3)以其中两边为邻边构造平行四边形,当所构造的平行四边形恰好是菱形时,这时该菱形的面积是________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据直线y=2x+b经过(2,﹣1),可得b=﹣1;根据直线y=2x+b经过(3,﹣2),即可得到b=﹣8,依据关于x的函数y=2x+b的图象与此图象有两个公共点,即可得出b的取值范围是﹣8<b<﹣1.
    【详解】
    解:在y=x﹣3(x>1)中,令x=2,则y=﹣1,
    若直线y=2x+b经过(2,﹣1),则﹣1=4+b,
    解得b=﹣1;
    在y=x﹣3(x>1)中,令x=1,则y=﹣2,
    点(1,﹣2)关于x=2对称的点为(3,﹣2),
    若直线y=2x+b经过(3,﹣2),则﹣2=6+b,
    解得b=﹣8,
    ∵关于x的函数y=2x+b的图象与此图象有两个公共点,
    ∴b的取值范围是﹣8<b<﹣1,
    故选:B.
    本题主要考查了一次函数图象与几何变换,解决问题给的关键是掌握一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.
    2、A
    【解析】
    根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.
    【详解】
    解:∵四边形ABCD是菱形,设AB,CD交于O点,
    ∴AO=OC,BO=OD,AC⊥BD,
    ∵AC=8,DB=6,
    ∴AO=4,OB=3,∠AOB=90°,
    由勾股定理得:AB==5,
    ∵S菱形ABCD=×AC×BD=AB×DH,
    ∴×8×6=5×DH,
    ∴DH=,
    故选A.
    本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.
    3、B
    【解析】
    分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
    详解:(x+1)(x-3)
    =x2-3x+x-3
    =x2-2x-3
    所以a=2,b=-3,
    故选B.
    点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
    4、B
    【解析】
    利用相似三角形的判定与性质得出,求出EC即可.
    【详解】
    ∵DE∥BC,
    ∴△ADE∽△ABC.
    ∴,即
    解得:EC=1.
    故选B.
    5、A
    【解析】
    根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,则可得答案 .
    【详解】
    根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y随x的增大而减小,所以k>2,结合选项选择A.
    本题考查反比例函数图象的性质,解题的关键是掌握反比例函数图象的性质.
    6、B
    【解析】
    根据一次函数的性质,一次函数与一元一次方程的关系对各个小项分析判断即可得解.
    【详解】
    图象过第一、二、三象限,
    ∴,,故①②错误;
    又∵图象与轴交于,
    ∴的解为,③正确.
    当时,图象在轴上方,,故④正确.
    综上可得③④正确
    故选:B.
    本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.
    7、C
    【解析】
    通过函数图象可得,货车出发1小时走的路程为60千米,客车到达终点所用的时间为6小时,根据行程问题的数量关系可以求出货车和客车的速度,利用数形结合思想及一元一次方程即可解答.
    【详解】
    解:由函数图象,得:货车的速度为60÷1=60千米/小时,客车的速度为600÷6=100千米/小时,故A错误;
    设客车离开起点x小时后,甲、乙两人第一次相遇,根据题意得:
    100x=60+60x,
    解得:x=1.5,
    ∴离开起点后,两车第一次相遇时,距离起点为:1.5×100=150(千米),
    故B错误;
    甲从起点到终点共用时为:600÷60=10(小时),
    故C正确;
    ∵客车到达终点时,所用时间为6小时,货车先出发1小时,
    ∴此时货车行走的时间为7小时,
    ∴货车走的路程为:7×60=420(千米),
    ∴客车到达终点时,两车相距:600﹣420=180(千米),故D错误;
    故选C.
    本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
    8、C
    【解析】
    将代入函数解析式即可求出.
    【详解】
    解:当时,函数,
    故选C.
    本题考查函数值的意义,将x的值代入函数关系式按照关系式提供的运算计算出y的值即为函数值.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据菱形的性质得出CD=AD,BC∥OA,根据D (4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案.
    【详解】
    ∵四边形ABCO是菱形,
    ∴CD=AD,BC∥OA,
    ∵D (4,2),反比例函数的图象经过点D,
    ∴k=8,C点的纵坐标是2×2=4,
    ∴,
    把y=4代入得:x=2,
    ∴n=3−2=1,
    ∴向左平移1个单位长度,反比例函数能过C点,
    故答案为:1.
    本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.
    10、5.
    【解析】
    由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.
    【详解】
    证明:∵BD为∠ABC的平分线,
    ∴∠EBD=∠CBD,
    又∵EF∥BC,
    ∴∠EDB=∠CBD,
    ∴∠EBD=∠EDB,
    ∴EB=ED,
    同理FC=FD,
    又∵EF=ED+DF,
    ∴EF=EB+FC=5.
    此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB
    11、19
    【解析】
    根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.
    【详解】
    ∵中位数为4
    ∴中间的数为4,
    又∵众数是2
    ∴前两个数是2,
    ∵众数2是唯一的,
    ∴第四个和第五个数不能相同,为5和6,
    ∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.
    本题考查中位数和众数,能根据中位数和众数的意义进行逆向推理是解决本题的关键.在读题时需注意“唯一”的众数为2,所以除了两个2之外其它的数只能为1个.
    12、-6
    【解析】
    由△PAO的面积为3可得=3,再结合图象经过的是第二象限,从而可以确定k值;
    【详解】
    解:∵S△PAO=3,
    ∴=3,
    ∴|k|=6,
    ∵图象经过第二象限,
    ∴k<0,
    ∴k=−6;
    故答案为:−6.
    本题主要考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,掌握反比例函数系数k的几何意义,反比例函数图象上点的坐标特征是解题的关键.
    13、0<a<3
    【解析】
    根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    【详解】
    ∵点P(a,a-3)在第四象限,
    ∴,解得0<a<3.
    三、解答题(本大题共5个小题,共48分)
    14、,的度数分别为,.
    【解析】
    连接AD,由条件AB∥DE,AF∥CD,进一步可得,再在四边形ABCD中,用四边形内角和是360°求出即可.
    【详解】
    解:连接.
    ∵AB∥DE,
    ∴.
    ∵AF∥CD,
    ∴.
    ∵,
    ∴,
    .
    在四边形中,.
    ∵,
    ∴.
    ∴,的度数分别为,.
    本题需要熟练运用平行线的性质和四边形内角和定理进行求解,解题的关键是连接AD,先将转化为,再用四边形内角和是360°求解,需要注意的是在用四边形内角和求时用到了整体思想.
    15、(1)BM=MN,BM⊥MN,证明见解析;(2)仍然成立,证明见解析
    【解析】
    (1)根据已知正方形ABCD的边角相等关系,推出△ABE≌△ADF(SAS),得出AE=AF,利用MN是△AEF的中位线,BM为Rt△ABE的中线,可得BM=MN,由外角性质,得出∠BME=∠1+∠3,再由MN∥AF,∠1+∠2+∠EAF=∠BAD=90°,等角代换可推出结论;
    (2)同(1)思路一样,证明△ABE≌△ADF(SAS),利用外角性质和中位线平行关系,通过等角代换即得证明结论.
    【详解】
    (1)BM=MN,BM⊥MN.
    证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,
    ∵CE=CF,
    ∴BC-CE=DC-CF,
    ∴BE=DF,
    ∴△ABE≌△ADF(SAS),
    ∴∠1=∠2,AE=AF,
    ∵M为AE的中点,N为EF的中点,
    ∴MN是△AEF的中位线,BM为Rt△ABE的中线.
    ∴MN∥AF,MN=AF,BM=AE=AM,
    ∴BM=MN,∠EMN=∠EAF,
    ∵BM=AM,
    ∴∠1=∠3, ∠2=∠3,
    ∴∠BME=∠1+∠3=∠1+∠2,
    ∴∠BMN=∠BME+∠EMN=∠1+∠2+∠EAF=∠BAD=90°,
    ∴BM⊥MN.
    故答案为:BM=MN,BM⊥MN.

    (2)(1)中结论仍然成立.
    证明:在正方形ABCD中,∠BAD=∠ABC=∠ADC=90°,AB=AD=BC=DC,
    ∴∠ABE=∠ADF=90°,
    ∵CE=CF,∴CE-BC=CF-DC,∴BE=DF,
    ∴△ABE≌△ADF(SAS),∴∠1=∠2,AE=AF,
    同理(1)得MN∥AF,MN=AF,BM=AE=AM,
    ∴BM=MN,
    同理(1)得∠BME=∠1+∠2,∠EMN=∠EAF,
    ∴∠BMN=∠EMN-∠BME=∠EAF-(∠1+∠2)=∠BAD=90°,
    ∴BM⊥MN,
    故答案为:结论仍成立.
    考查了正方形的性质,全等三角形的判定和性质,外角的性质,直角三角形中中线的性质,三角形中位线性质,熟记几何图形的性质概念是解题关键,注意图形的类比拓展.
    16、(1)见解析;(2)∠APB=120°.
    【解析】
    (1)由△ACP∽△PDB,根据相似三角形的对应边成比例,可得AC:PD=PC:BD,又由△PCD是等边三角形,即可证得CD2=AC•BD;
    (2)由△ACP∽△PDB,根据相似三角形对应角相等,可得∠A=∠BPD,又由△PCD是等边三角形,即可求得∠APB的度数.
    【详解】
    (1)证明:∵△ACP∽△PDB,
    ∴AC:PD=PC:BD,
    ∴PD•PC=AC•BD,
    ∵△PCD是等边三角形,
    ∴PC=CD=PD,
    ∴CD2=AC•BD;
    (2)解:∵△ACP∽△PDB,
    ∴∠A=∠BPD,
    ∵△PCD是等边三角形,
    ∴∠PCD=∠CPD=60°,
    ∴∠PCD=∠A+∠APC=60°,
    ∴∠APC+∠BPD=60°,
    ∴∠APB=∠APC+∠CPD+∠BPD=120°.
    此题考查了相似三角形的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
    17、见解析
    【解析】
    根据平行四边形的性质得到AB=CD,AD=BC,∠A=∠C.,利用点M、N分别是AB、CD的中点证得,再证明△ADM≌△CBN即可得到结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴ AB=CD,AD=BC,∠A=∠C.
    又∵点M、N分别是AB、CD的中点,


    ∴ △ADM≌△CBN(SAS)
    ∴ DM = BN.
    此题考查平行四边形的性质,全等三角形的判定与性质,线段中点的性质,根据题中的已知条件确定正确全等三角形的思路是解题的关键.
    18、,图象开口向上,对称轴直线,顶点.
    【解析】
    首先根据待定系数法求解二次函数的解析式,再根据二次函数的系数确定抛物线的开口方向,对称轴,和公式法计算顶点坐标.
    【详解】
    设二次函数的解析式为.
    由已知,函数的图象经过三点,可得
    解这个方程组,得,,.
    所求二次函数的解析式为,
    图象开口向上,对称轴直线,顶点.
    本题主要考查二次函数抛物线解析式的计算、抛物线的性质,这是考试的必考点,必须熟练掌握.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    根据已知条件可以得到点A、B的横坐标,则由反比例函数图象上点的坐标特征易求点O到直线AB的距离,所以根据三角形的面积公式进行解答即可;
    【详解】
    )∵a>0,b<0,当|a|=|b|=5时,
    可得A(5, ),B(−5, ),
    ∴S△OAB=×10×=2;
    此题考查反比例函数,解题关键在于得到点A、B的横坐标
    20、3,4,5 6,8,10
    【解析】
    根据勾股数的定义即可得出答案.
    【详解】
    ∵3、4、5是三个正整数,
    且满足,
    ∴3、4、5是一组勾股数;
    同理,6、8、10也是一组勾股数.
    故答案为:①3,4,5;②6,8,10.
    本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
    21、1
    【解析】
    根据算术平均数的计算方法列方程求解即可.
    【详解】
    解:由题意得:
    解得:.
    故答案为1.
    此题考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.
    22、y=2x﹣1.
    【解析】
    将▱OABC的面积分成相等的两部分,所以直线必过平行四边形的中心D,由B的坐标即可求出其中心坐标D,设过直线的解析式为y=kx+b,把D和Q的坐标代入即可求出直线解析式即可.
    【详解】
    解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,
    平行四边形OABC的对称中心D(4,1),
    设直线MD的解析式为y=kx+b,

    即,
    ∴该直线的函数表达式为y=2x﹣1,
    因此,本题正确答案是: y=2x﹣1.
    本题考察平行四边形与函数的综合运用,能够找出对称中心是解题关键.
    23、 (1,−4)
    【解析】
    根据反比例函数图象上点的坐标特征,正比例函数与反比例函数的两交点坐标关于原点对称.
    【详解】
    ∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,
    ∵一个交点的坐标为(−1,4),
    ∴它的另一个交点的坐标是(1,−4),
    故答案为:(1,−4).
    本题考查反比例函数图象的对称性,解题的关键是掌握反比例函数图象的对称性.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元
    【解析】
    (1)设租用甲种客车x辆,根据题意填表格即可.
    (2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x + 2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.
    【详解】
    解:(1)
    (2)当租用甲种客车x辆时,设租车的总费用为y元,
    则:y = 400x +280(8﹣x)=120x + 2240,
    又∵45x+30(8﹣x)≥330,解得x≥6,
    在函数y=120x+2240中,
    ∵120>0,
    ∴y随x的增大而增大,
    ∴当x = 6时,y取得最小值,最小值为2960.
    答:最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元.
    此题考查一元一次不等式的应用,一次函数的应用,解题关键在于利用不等式求取的范围解答即可.
    25、7
    【解析】
    运用待定系数法求出直线的解析式,然后把x=-2代入解析式求出a的值。
    【详解】
    解:(1)设直线的解析式为y=kx+b,把A(-1,5),B(3,-3)代入,
    可得:
    解得:
    所以直线解析式为:y=-2x+3,
    把P(-2,a)代入y=-2x+3中,
    得:a=7
    故答案为:7
    此题考查一次函数问题,关键是根据待定系数法解解析式.
    26、(1)证明见解析;(2);(3)或或.
    【解析】
    (1)先利用三角形中位线定理得到,故,可得四边形为平行四边形,再根据对称性得到,即可得到,即邻边相等的平行四边形是菱形,故可求解;
    (2)过点作于点,过点作于点,于点,根据菱形的面积可求出,再根据中位线及正方形的性质分别求出PN,PQ,CN,AQ,设,在中,得到方程求出x即可求解;
    (3)过点作的垂线,分别交,于点,,分当时、当时、当时分别求出菱形的面积即可.
    【详解】
    解:(1)∵,,分别为,,的中点,
    ∴,
    ∴.
    ∴四边形为平行四边形.
    ∵与关于对称,
    ∴,
    ∴,
    ∴四边形为菱形.
    (2)过点作于点,过点作于点,于点,如图.
    四边形,
    ∴.
    ∵为的中点,
    ∴,
    ∴.
    ∵,,
    ∴,
    ∴.
    ∴,
    ∴.
    设,
    ∴.在中,,即,
    解得,
    ∴.
    (3)菱形的面积为或或.理由如下:
    如图,过点作的垂线,分别交,于点,.
    当时,点在点处,
    此时菱形;
    当时,此时是正三角形,
    ∴,PK=BP=5cm,
    菱形;
    当时,此时是正三角形,

    则CL=CP=5cm,
    ∴,,
    菱形.
    综上所述,菱形的面积为或或.
    此题主要考查正方形的性质与判定,解题的关键是熟知菱形的性质与判定、勾股定理的应用及等边三角形的性质.
    题号





    总分
    得分
    批阅人
    车辆数(辆)
    载客量(人)
    租金(元)
    甲种客车
    x
    45x
    400x
    乙种客车
    ________
    __________
    _________
    车辆数(辆)
    载客量(人)
    租金(元)
    甲种客车
    x
    45x
    400x
    乙种客车
    8﹣x
    30(8﹣x)
    280(8﹣x)
    相关试卷

    2024-2025学年天津市南开区津英中学数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年天津市南开区津英中学数学九年级第一学期开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年天津市东丽区立德中学数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省济宁市兖州区东方中学数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年山东省济宁市兖州区东方中学数学九年级第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map