![2024年四川省广安市数学九年级第一学期开学调研试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16216817/0-1728020732905/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年四川省广安市数学九年级第一学期开学调研试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16216817/0-1728020732981/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年四川省广安市数学九年级第一学期开学调研试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16216817/0-1728020733003/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年四川省广安市数学九年级第一学期开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系内,点在第三象限,则m的取值范围是
A.B.C.D.
2、(4分)如图,在平面直角坐标系 xOy 中,菱形 ABOC 的顶点 O 在坐标原点,边 BO 在 x 轴的负半轴上,顶点 C的坐标为(﹣3,4),反比例函数 y 的图象与菱形对角线 AO 交于 D 点,连接 BD,当 BD⊥x 轴时,k的值是( )
A.B.C.﹣12D.
3、(4分)如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为( )
A.x>﹣2B.x<﹣2C.x>﹣5D.x<﹣5
4、(4分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,观察图形,与∠AED相等的角有( )
A.4个B.3个C.2个D.1个
5、(4分)龙华地铁4号线北延计划如期开工,由清湖站开始,到达观澜的牛湖站,长约10.770公里,其中需修建的高架线长1700m.在修建完400m后,为了更快更好服务市民,采用新技术,工效比原来提升了25%.结果比原计划提前4天完成高架线的修建任务.设原计划每天修建xm,依题意列方程得( )
A.B.
C.D.
6、(4分)如图,被笑脸盖住的点的坐标可能是( )
A.B.C.D.
7、(4分)如图,丝带重叠的部分一定是( )
A.菱形B.矩形C.正方形D.都有可能
8、(4分)下列各式从左到右的变形中,是分解因式的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)平行四边形ABCD中,∠A-∠B=20°,则∠A=______,∠B=_______.
10、(4分)如图,在矩形中,,,点是边上一点,若平分,则的面积为________.
11、(4分)已知,,则的值为___________.
12、(4分)一个样本为1,3,a,b,c,2,2已知这个样本的众数为3,平均数为2,那么这个样本的中位数为_______
13、(4分)如图所示,在四边形中,,分别是的中点,,则的长是___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.
根据以上信息,整理分析数据如下:
(1)写出表格中的a、b、c的值;
(2)已知乙队员射击成绩的方差为4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.
15、(8分)甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?
16、(8分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;②当AM的值为 时,四边形AMDN是菱形.
17、(10分)已知函数.
(1)若函数图象经过原点,求的值;
(2)若这个函数是一次函数,且随着的增大而减小,求的取值范围.
18、(10分)我们知道:“距离地面越高,气温越低.”下表表示的是某地某时气温随高度变化而变化的情况
(1)请你用关系式表示出与的关系;
(2)距离地面的高空气温是多少?
(3)当地某山顶当时的气温为,求此山顶与地面的高度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简分式:=_____.
20、(4分)菱形ABCD的边AB为5 cm,对角线AC为8 cm,则菱形ABCD的面积为_____cm1.
21、(4分)某班七个兴趣小组人数分别为4,x,5,5,4,6,7,已知这组数据的平均数是5,则x=________.
22、(4分)函数y=36x-10的图象经过第______象限.
23、(4分)计算:-=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标.
(2)判断以A,B,A1,B1为顶点的四边形的形状,请直接在答卷上填写答案.
25、(10分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,,解答下列问题:
(1)将向上平移1个单位长度,再向右平移5个单位长度后得到的,画出;
(2)绕原点逆时针方向旋转得到,画出;
(3)如果利用旋转可以得到,请直接写出旋转中心的坐标.
26、(12分)在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.
(1)如图1,若OP=OE,求证:AE=PB;
(2)如图2,连接BE交PC于点F,若BE⊥CG.
①求证:四边形BFGP是菱形;
②当AE=9,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由于在平面直角坐标系内,点在第三象限,根据点在平面直角坐标系内符号特征可得:,解不等式组可得:不等式组的解集是.
【详解】
因为点在第三象限,
所以,
解得不等式组的解集是,
故选C.
本题主要考查点在平面直角坐标系内符号特征,解决本题的关键是要熟练掌握点在平面直角坐标系内点的符号特征.
2、B
【解析】
先利用勾股定理计算出OC=5,再利用菱形的性质得到AC=OB=OC=5,AC∥OB,则B(-5,0),A(-8,4),接着利用待定系数法确定直线OA的解析式为y=-x,则可确定D(-5,),然后把D点坐标代入y=中可得到k的值.
【详解】
∵C(−3,4),
∴OC==5,
∵四边形OBAC为菱形,
∴AC=OB=OC=5,AC∥OB,
∴B(−5,0),A(−8,4),
设直线OA的解析式为y=mx,
把A(−8,4)代入得−8m=4,解得m=−,
∴直线OA的解析式为y=-x,
当x=−5时,y=-x =,则D(−5,),
把D(−5,)代入y=,
∴k=−= .
故选B.
本题考查反比例函数图象上点的坐标特征和菱形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和菱形的性质.
3、A
【解析】
函数y1=3x+b和y1=ax﹣3的图象交于点P(﹣1,﹣5),求不等式3x+b>ax﹣3的解集,就是看函数在什么范围内y1=3x+b的图像在函数y1=ax﹣3的图象上面,据此进一步求解即可.
【详解】
从图像得到,当x>﹣1时,y1=3x+b的图像对应的点在函数y1=ax﹣3的图像上面,
∴不等式3x+b>ax﹣3的解集为:x>﹣1.
故选:A.
本题主要考查了一次函数与不等式的综合运用,熟练掌握相关方法是解题关键.
4、B
【解析】
根据正方形的性质证明△DAE≌△ABF,即可进行判断.
【详解】
解:∵四边形ABCD是正方形,
∴∠DAB=∠B=90°,AD=AB,
∵AF=DE,
∴△DAE≌△ABF(HL),
∴∠ADE=∠BAF,∠AED=∠AFB,
∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,
∴∠DAG=∠AED,
∵∠ADE+∠CDG=90°,
∴∠CDE=∠AED.
故选:B.
此题主要考查正方形的性质,解题的关键是熟知全等三角形的判定与性质.
5、C
【解析】
设原计划每天修建xm,则实际每天修建(1+25%)xm,根据题意可得,增加工作效率之后比原计划提前4天完成任务,据此列方程.
【详解】
解:设原计划每天修建xm,则实际每天修建(1+25%)xm,由题意得:
故选C.
6、C
【解析】
判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.
【详解】
由图可知,被笑脸盖住的点在第三象限,
(5,2),(−5,2),(−5,−2),(5,−2)四个点只有(−5,−2)在第三象限.
故选:C.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
7、A
【解析】
首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.
【详解】
解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,
所以AB∥CD,AD∥BC,AE=AF.
∴四边形ABCD是平行四边形.
∵S▱ABCD=BC•AE=CD•AF.
∴BC=CD,
∴四边形ABCD是菱形.
故选:A.
本题考查了平行四边形的判定和性质以及菱形的判定和性质,利用平行四边形的面积公式得到一组邻边相等是解题关键.
8、B
【解析】
A、是整式乘法,不符合题意;B、是因式分解,符合题意;C、右边不是整式的积的形式,不符合题意;D、右边不是整式的积的形式,不符合题意,
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、100°, 80°
【解析】
根据平行四边形的性质得出AD∥BC,求出∠A+∠B=180°,解方程组求出答案即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠B=180°,
∵∠A-∠B=20°,
∴∠A=100°,∠B=80°,
故答案为:100°,80°.
本题考查了平行四边形的性质,能根据平行线得出∠A+∠B=180°是解此题的关键,注意:平行四边形的对边平行.
10、1
【解析】
首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC,AD=BC=5,CD=AB=3,
∴∠CED=∠ADE,
∵ED平分∠AEC,
∴∠AED=∠CED,
∴∠EDA=∠AED,
∴AD=AE=5,
∴BE=,
∴△ABE的面积=BE•AB=×4×3=1;
故答案为:1.
本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.
11、1
【解析】
将写成(x+y)(x-y),然后利用整体代入求值即可.
【详解】
解:∵,,
∴,
故答案为:1.
本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.
12、2
【解析】分析:先根据众数为3,平均数为2求出a,b,c的值,然后根据中位数的求法求解即可.
详解:∵这个样本的众数为3,
∴a,b,c中至少有两个数是3.
∵平均数为2,
∴1+3+a+b+c+2+2=2×7,
∴a+b+c=6,
∴a,b,c中有2个3,1个0,
∴从小到大可排列为:0,1,2,2,3,3,3,
∴中位数是2.
故答案为:2.
点睛:本题考查了众数、平均数、中位数的计算,熟练掌握众数、平均数、中位数的计算方法是解答本题的关键.众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.
13、
【解析】
根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数为30°,通过构造直角三角形求出MN.
【详解】
解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,
∴PM=AB=2,PN=DC=2,PM∥AB,PN∥DC,
∵AB=CD,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,
∴∠MPD=∠ABD=20°,∠BPN=∠BDC=80°,
∴∠MPN=∠MPD+∠NPD=20°+(180-80)°=120°,
∴∠PMN==30°.
过P点作PH⊥MN,交MN于点H.
∵HQ⊥MN,
∴HQ平分∠MHN,NH=HM.
∵MP=2,∠PMN=30°,
∴MH=PM•cs60°=,
∴MN=2MH=2.
本题考查了三角形中位线定理及等腰三角形的判定和性质、30°直角三角形性质,解题时要善于根据已知信息,确定应用的知识.
三、解答题(本大题共5个小题,共48分)
14、(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定
【解析】
(1)利用加权平均数的计算公式、中位数、众数的概念解答;
(2)利用方差的计算公式求出S甲2,根据方差的性质判断即可.
【详解】
解:(1)a=(3+6+4+8+7+8+7+8+10+9)=7,b=7,c=8;
(2)S甲2=×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×1]=1.2,
则S甲2<S乙2,
∴甲队员的射击成绩较稳定.
故答案为(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定.
本题考查的是加权平均数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.
15、甲机器人每小时各检测零件30个,乙机器人每小时检测零件20个。
【解析】
设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个,根据题意列出方程即可.
【详解】
解:设乙机器人每小时检测零件个,则甲机器人每小时各检测零件()个
由题得
解得
检验,符合题意,则甲:.
本题考查的是分式方程,熟练掌握分式方程是解题的关键.
16、(1)见解析(2)①1;②2
【解析】
试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;
(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;
②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.
试题解析:(1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵点E是AD边的中点,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:
∵AM=1=AD,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四边形AMDN是矩形;
②当AM的值为2时,四边形AMDN是菱形.理由如下:
∵AM=2,
∴AM=AD=2,
∴△AMD是等边三角形,
∴AM=DM,
∴平行四边形AMDN是菱形,
考点:1.菱形的判定与性质;2.平行四边形的判定;3.矩形的判定.
17、(1),(2).
【解析】
(1)把原点代入解析式即可求解;
(2)根据一次函数的增减性即可求解.
【详解】
(1)把(0,0)代入
得0=m+5
解得m=-5
(2)依题意得3m-1<0,
解得
此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的增减性.
18、(1);(2);(3)米.
【解析】
(1)根据表中的数据写出函数关系式;
(2)把相关数据代入函数关系式求解即可;
(3)把相关数据代入函数关系式求解即可.
【详解】
(1)由表格数据可知,每升高1千米,气温下降6,可得与和函数关系式为:
(2)
(3)
本题主要考查了函数关系式及函数值,解题的关键是根据表中的数据写出函数关系式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-
【解析】
将分子变形为﹣(x﹣y),再约去分子、分母的公因式x﹣y即可得到结论.
【详解】
==﹣.
故答案为﹣.
本题主要考查分式的约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
20、14
【解析】
【分析】连接BD.利用菱形性质得BD=1OB,OA=AC,利用勾股定理求OB,通过对角线求菱形面积.
【详解】连接BD. AC⊥BD,
因为,四边形ABCD是菱形,
所以,AC⊥BD,BD=1OB,OA=AC=4cm,
所以,再Rt△AOB中,
OB=cm,
所以,BD=1OB=6 cm
所以,菱形的面积是
cm1
故答案为:14
【点睛】本题考核知识点:菱形的性质.解题关键点:利用勾股定理求菱形的对角线.
21、4
【解析】
根据平均数的定义求出x的值即可.
【详解】
根据题意得,,
解得,x=4.
故答案为:4.
要熟练掌握平均数的定义以及求法.
22、【解析】
根据y=kx+b(k≠0,且k,b为常数),当k>0,b<0时,函数图象过一、三、四象限.
【详解】
解:因为函数中,
,,
所以函数图象过一、三、四象限,
故答案为:一、三、四.
此题主要考查了一次函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.
23、1
【解析】
根据算术平方根和立方根定义,分别求出各项的值,再相加即可.
【详解】
解:因为,所以.
故答案为1.
本题考核知识点:算术平方根和立方根. 解题关键点:熟记算术平方根和立方根定义,仔细求出算术平方根和立方根.
二、解答题(本大题共3个小题,共30分)
24、(1)A1(3,4)、B1(0,2);(2)四边形ABA1B1是平行四边形.
【解析】
(1)由于△OAB绕O点旋转180°得到△OA1B1,利用关于原点中心对称的点的坐标特征得到A1,B1的坐标,然后描点,再连结OB1、OA1和A1B1即可;
(2)根据中心对称的性质得OA=OA1,OB=OB1,则利用对角线互相平分得四边形为平行四边形可判断四边形ABA1B1为平行四边形.
【详解】
解:(1)如图图所示,△OA1B1即为所求,
A1(3,4)、B1(0,2);
(2)由图可知,OB=OB1=2、OA=OA1==5,
∴四边形ABA1B1是平行四边形.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.
25、 (1)见解析;(2)见解析;(3)(3,-2).
【解析】
(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接得到△A1B1C1,然后写出A1的坐标即可;
(2)根据网格结构找出点A、B、C以点O为旋转中心逆时针方向旋转90°后的对应点,然后顺次连接得到△A2B2O;
(3)利用旋转的性质得出答案.
【详解】
(1)如图所示,
为所求作的三角形;
(2)如图所示,
为所求作的三角形.
(3) 将△A2B2C2绕某点P旋转可以得到△A1B1C1,点的坐标为:.
考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
26、(1)见解析;(2)①见解析;②
【解析】
(1)由折叠的性质可得PB=PG,∠B=∠G=90°,由“AAS”可证△AOP≌△GOE,可得OA=GO,即可得结论;
(2)①由折叠的性质可得∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG,由平行线的性质可得∠BPF=∠BFP=∠GPC,可得BP=BF,即可得结论;
②由勾股定理可求BE的长,EC的长,由相似三角形的性质可得,可求BF=BP=5x=,由勾股定理可求PC的长,即可求解.
【详解】
证明:(1)∵四边形ABCD是矩形
∴AB=CD,AD=BC,AD∥BC,∠A=∠B=90°
∵将△PBC沿直线PC折叠,
∴PB=PG,∠B=∠G=90°
∵∠AOP=∠GOE,OP=OE,∠A=∠G=90°
∴△AOP≌△GOE(AAS)
∴AO=GO
∴AO+OE=GO+OP
∴AE=GP,
∴AE=PB,
(2)①∵△BPC沿PC折叠得到△GPC,
∴∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG
∵BE⊥CG,
∴BE∥PG,
∴∠GPF=∠PFB,
∴∠BPF=∠BFP,
∴BP=BF
∴BP=BF=PG=GF
∴四边形BFGP是菱形;
②∵AE=9,CD=AB=12,AD=BC=GC=25,
∴DE=AD-AE=16,BE==15,
在Rt△DEC中,EC==20
∵BE∥PG
∴△CEF∽△CGP
∴
∴==
∴设EF=4x,PG=5x,
∴BF=BP=GF=5x,
∵BF+EF=BE=15
∴9x=15
∴x=
∴BF=BP=5x=,
在Rt△BPC中,PC==
∴==
本题是相似形综合题,考查了折叠的性质,相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,菱形的判定和性质,勾股定理等知识,利用方程的思想解决问题是解本题的关键.
题号
一
二
三
四
五
总分
得分
队员
平均/环
中位数/环
众数/环
甲
7
b
7
乙
a
7.5
c
距离地面高度
0
1
2
3
4
5
气温
20
14
8
2
﹣4
﹣10
2024年四川省成都市高新南区九年级数学第一学期开学调研试题【含答案】: 这是一份2024年四川省成都市高新南区九年级数学第一学期开学调研试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年四川省成都市大邑县数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024年四川省成都市大邑县数学九年级第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省广安市岳池县数学九年级第一学期开学考试模拟试题【含答案】: 这是一份2024-2025学年四川省广安市岳池县数学九年级第一学期开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。