2024年四川省达州达川区四校联考数学九上开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为
( )
A.280B.140C.70D.196
2、(4分)如图,一次函数y1=k1x+2与反比例函数y2=的图象交点A(m,2)和B(﹣4,﹣1)两点,若y1>y2,则x的取值范围是( )
A.x<﹣4或0<x<2B.x>2或﹣4<x<0
C.﹣4<x<2D.x<﹣4或x>2
3、(4分)若点A(﹣2,0)、B(﹣1,a)、C(0,4)在同一条直线上,则a的值是( )
A.2B.1C.﹣2D.4
4、(4分)如图是根据某班 40 名同学一周的体育锻炼情况绘制的统计图,该班 40 名同学一周参加体育锻炼时间的中位数,众数分别是( )
A.10.5,16B.8.5,16C.8.5,8D.9,8
5、(4分)如图,l1∥l2,▱ABCD的顶点A在l1上,BC交l2于点E.若∠C=100°,则∠1+∠2=( )
A.100°B.90°C.80°D.70°
6、(4分)一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )
A.五边形B.六边形C.七边形D.八边形
7、(4分)已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是( )
A.(2,1)B.(2,3)C.(2,2)D.(1,2)
8、(4分)某青年排球队12名队员的年龄情况如下表所示:
这12名队员的平均年龄是( )
A.18岁B.19岁C.20岁D.21岁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一组数据1,2,x,4的众数是1,则这组数据的方差为_____.
10、(4分)甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,若两人比赛成绩的方差分别为S2甲=1.25和S2乙=3,则成绩比较稳定的是__________(填甲或乙).
11、(4分)计算:__________.
12、(4分)如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
13、(4分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系xOy中,直线过A(0,—3),B(1,2).求直线的表达式.
15、(8分)先化简,再求的值,其中x=2
16、(8分)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.
(1)请直接写出直线AB的函数解析式: ;
(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.
17、(10分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
请根据图表信息回答下列问题:
(1)频数分布表中的a= ,b= ;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?
18、(10分)如图,矩形中,,,为上一点,将沿翻折至,与相交于点,与相交于点,且.
(1)求证:;
(2)求的长度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱体铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上). 现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.①图2中折线ABC表示___________槽中水的深度与注水时间之间的关系(选填“甲”或“乙”);②点B的纵坐标表示的实际意义是___________.
20、(4分)弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:
当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.
21、(4分)如图所示,为了安全起见,要为一段高5米,斜边长13米的楼梯上红地毯,则红地毯至少需要________米长。
22、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.
23、(4分)甲、乙两人进行射击比赛,在相同条件下各射击 12 次,他们的平均成绩各为 8 环,12 次射击成绩的方差分别是:S 甲=3,S 乙=2.5,成绩较为稳定的是__________.(填 “甲”或“乙”)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点.
(1)当时,求该抛物线下方(包括边界)的好点个数.
(2)当时,求该抛物线上的好点坐标.
(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
25、(10分)已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.
(1)求证:BM=CM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当矩形ABCD的长和宽满足什么条件时,四边形MENF是正方形?为什么?
26、(12分) (1)解方程:;
(2)解不等式:2(x-6)+4≤3x-5,并将它的解集在数轴上表示出来.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:设小长方形的长、宽分别为x、y,
依题意得:,
解得:,
则矩形ABCD的面积为7×2×5=1.
故选C.
【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.
2、B
【解析】
先把B点坐标代入y1=求出k1的值得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后写出一次函数图象在反比例函数图象上方所对应的自变量的范围.
【详解】
解:把B(﹣4,﹣1)代入y1=得k1=﹣4×(﹣1)=4,
所以反比例函数解析式为y1=,
把A(m,1)代入y1=得1m=4,解得m=1,
所以A(1,1),
当﹣4<x<0或x>1时,y1>y1.
故选:B.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
3、A
【解析】
先根据A、C两点的坐标求出过此两点的函数解析式,再把B(﹣1,a)代入此解析式即可求出a的值.
【详解】
设直线AC的解析式为y=kx+b(k≠0),
把点A(-2,0)、C(0,4)分别代入得
,解得,
∴直线AC的解析式为y=2x+4,
把B(-1,a)代入得-2+4=a,
解得:a=2,
故选A.
本题考查了一次函数图象上点的坐标特征,待定系数法等,根据题意得出该一次函数的解析式是解答此题的关键.
4、D
【解析】
将这组数据按从小到大的顺序排列后,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,为1.故选D.
5、C
【解析】
由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠BAD=∠C=100°,AD∥BC,
∴∠2=∠ADE,
∵l1∥l2,
∴∠ADE+∠BAD+∠1=180°,
∴∠1+∠2=180°-∠BAD=80°;
故选:C.
本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.
6、D
【解析】
设多边形的边数为n,多加的外角度数为x,根据内角和与外角度数的和列出方程,由多边形的边数n为整数求解可得.
【详解】
设这个多边形的边数为n,依题意得
(n-2)×180°=3×360°,
解得n=8,
∴这个多边形为八边形,
故选D.
此题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.
7、D
【解析】
根据点A、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.
【详解】
∵A(1,0)的对应点A′的坐标为(2,﹣1),
∴平移规律为横坐标加1,纵坐标减1,
∵点B(0,3)的对应点为B′,
∴B′的坐标为(1,2).
故选D.
本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
8、C
【解析】
根据平均数的公式 求解即可.
【详解】
这12名队员的平均年龄是
(岁),
故选:C.
本题主要考查平均数,掌握平均数的求法是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.5
【解析】
试题分析:众数是这组数据出现次数最多的数,由此判断x为1,这组数据的平均数是(1+2+1+4)÷4=2,所以方差为,=1.5.故这组数据的方差为1.5.
考点:方差计算.
10、甲
【解析】
根据方差的意义即可求得答案.
【详解】
∵S甲2=1.25,S乙2=3,
∴S甲2<S乙2,
∴甲的成绩比较稳定,
故答案为:甲.
此题考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定.
11、8
【解析】
利用平方差公式即可解答.
【详解】
解:原式=11-3
=8.
本题考查平方差公式,熟悉掌握是解题关键.
12、①③④
【解析】
根据中位线的性质,对线段长度、三角形周长和面积、角的变化情况进行判断即可.
【详解】
点,为定点,点,分别为,的中点,
是的中位线,
,
即线段的长度不变,故①符合题意,
、的长度随点的移动而变化,
的周长会随点的移动而变化,故②不符合题意;
的长度不变,点到的距离等于与的距离的一半,
的面积不变,故③符合题意;
直线,之间的距离不随点的移动而变化,故④符合题意;
的大小点的移动而变化,故⑤不符合题意.
综上所述,不会随点的移动而改变的是:①③④.
故答案为:①③④.
本题考查了三角形的动点问题,掌握中位线的性质、线段长度的性质、三角形周长和面积的性质、角的性质是解题的关键.
13、(-3,-1)
【解析】
根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.
【详解】
解:∵点Q与点P(3,﹣1)关于y轴对称,
∴Q(-3,-1).
故答案为:(-3,-1).
本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
把A(0,-3),B(1,2)代入y=kx+b,利用待定系数法即可求出直线的表达式
【详解】
设,
将(0,-3)(1,2)代入得,
解得,
.
本题考查了一次函数式,利用待定系数法求出直线的表达式是解题的关键.
15、 , .
【解析】
首先把分式利用通分、约分化简,然后代入数值计算即可求解.
【详解】
解:
=
=
= ,
当x=3时,原式= = .
本题考查分式的化简求值,熟练掌握分式的运算法则是解题的关键.
16、(1);(2)当t=4时,四边形BQPM是菱形.
【解析】
(1)由点A、B的坐标,利用待定系数法求得直线AB的函数解析式;
(2)当t=4时,求得BQ、OP的长度,结合勾股定理得到PQ=BQ;由相似三角形:△APM∽△AOB的对应边相等求得PM的长度,得到BQ=PM,所以该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知当t=4时,四边形BQPM是菱形.
【详解】
解:(1)设直线AB的解析式为:y=kx+b(k≠0).
把点A(1,0)、B(0,4)分别代入,得
解得.
故直线AB的函数解析式是:y=﹣x+1.
故答案是:y=﹣x+1.
(2)当t=4时,四边形BQPM是菱形.理由如下:
当t=4时,BQ=,则OQ=.
当t=4时,OP=,则AP=.
由勾股定理求得PQ=.
∵PM∥OB,
∴△APM∽△AOB,
∴,即,
解得PM=.
∴四边形BQPM是平行四边形,
∴当t=4时,四边形BQPM是菱形.
考查了一次函数综合题,熟练掌握待定系数法求一次函数解析式,菱形的判定与性质,勾股定理,相似三角形的判定与性质,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.
17、(1)25;0.10;(2)补图见解析;(3)200人.
【解析】
(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;
(2)补全条形统计图即可;
(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.
【详解】
解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;
故答案为25;0.10;
(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:
(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.
此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.
18、(1)详见解析;(2).
【解析】
(1)利用全等三角形的性质证明OD=OE,OG=OP,推出DG=PE即可解决问题.
(2)设AP=EP=x,则PD=GE=6-x,DG=x,可得CG=8-x,BG=8-(6-x)=2+x,在△BCG中根据勾股定理得:BC2+CG2=BG2,构建方程即可解决问题.
【详解】
(1)证明:四边形是矩形
,,
根据题意得:,
,,,
在和中
,
,
,,
,
,
即,
;
(2)如图所示,
由(1)得:,
,
又,
设,则,,
,,
在中根据勾股定理得:,
即,
解得:,
.
故答案为:(1)详见解析;(2).
本题考查矩形与翻折变换,全等三角形的判定和性质,勾股定理,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、乙 乙槽中铁块的高度为14cm
【解析】
根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平.
【详解】
①根据题意可知图2中折线ABC表示乙槽中水的深度与注水时间之间的关系;
②点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm,
故答案为乙,乙槽中铁块的高度为14cm.
本题考查了实际问题与函数的图象,理解题意,准确识图是解决此类问题的关键.
20、1
【解析】
根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.
【详解】
解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
将(0.5,16)、(1.0,17)代入,得: ,
解得: ,
∴L与x之间的函数关系式为:L=2x+15;
当x=4时,L=2×4+15=1(cm)
故重物为4kg时弹簧总长L是1cm,
故答案为1.
吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.
21、17
【解析】
地毯的长度实际是所有台阶的宽加上台阶的高,平移可得,台阶的宽之和与高之和构成了直角三角形的两条直角边,因此利用勾股定理求出水平距离即可.
【详解】
根据勾股定理,楼梯水平长度为:
=12米,
则红地毯至少要12+5=17米长.
本题考查了勾股定理的应用,是一道实际问题,解题的关键是从实际问题中抽象出直角三角形,利用平移性质,把地毯长度分割为直角三角形的直角边.
22、(1,3)或(4,3)
【解析】
根据△ODP是腰长为5的等腰三角形,因此要分类讨论到底是哪两条腰相等:①PD=OD为锐角三角形;②OP=OD;③OD=PD为钝角三角形,注意不重不漏.
【详解】
∵C(0,3),A(9,0)
∴B的坐标为(9,3)
①当P运动到图①所示的位置时
此时DO=PD=5
过点P作PE⊥OA于点E,
在RT△OPE中,根据勾股定理4
∴OE=OD-DE=1
此时P点的坐标为(1,3);
②当P运动到图②所示的位置时
此时DO=PO=5
过点P作PE⊥OA于点E,
在RT△OPE中,根据勾股定理4
此时P点的坐标为(4,3);
③当P运动到图③所示的位置时
此时OD=PD=5
过点P作PE⊥OA于点E
在RT△OPE中,根据勾股定理4
∴OE=OD+DE=9
此时P点的坐标为(9,3),此时P点与B点重合,故不符合题意.
综上所述,P的坐标为(1,3)或(4,3)
本题主要考查等腰三角形的判定以及勾股定理的应用.
23、乙
【解析】
根据方差的意义,比较所给的两个方差的大小即可得出结论.
【详解】
∵,乙的方差小,
∴本题中成绩较为稳定的是乙,故填乙.
本题考查方差在实际中的应用.方差反应一组数据的稳定程度,方差越大这组数据越不稳定,方差越小,说明这组数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、(1)好点有:,,,和,共5个;(2),和;(3).
【解析】
(1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可;(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题;(3)如图3中,抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时Dm的值,即可判断.
【详解】
解:(1)当时,二次函数的表达式为
画出函数图像(图1)
图1
当时,;当时,
抛物线经过点和
好点有:,,,和,共5个
(2)当时,二次函数的表达式为
画出函数图像(图2)
图2
当时,;当时,;当时,
该抛物线上存在好点,坐标分别是,和
(3)抛物线顶点P的坐标为
点P支直线上
由于点P在正方形内部,则
如图3,点,
图3
当顶点P支正方形OABC内,且好点恰好存在8个时,抛物线与线段EF有交点(点F除外)
当抛物线经过点时,
解得:,(舍去)
当抛物线经过点时,
解得:,(舍去)
当时,顶点P在正方形OABC内,恰好存在8个好点
本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题.
25、 (1)见解析;(2)平行四边形MENF是菱形,见解析;(3)即当AD:AB=2:1时,四边形MENF是正方形,理由见解析.
【解析】
(1)证明△ABM≌△DCM即可求解
(2)先证明四边形MENF是平行四边形,再根据(1)中的△ABM≌△DCM可得BM=CM,即ME=MF,即可求证平行四边形MENF是菱形
(3)当AD:AB=2:1时,易得∠ABM=∠AMB=45°,∠EMF=180°﹣45°﹣45°=90°,又四边形MENF是菱形,故可证菱形MENF是正方形,
【详解】
(1)证明:∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M为AD中点,
∴AM=DM,
在△ABM和△DCM中,
∴△ABM≌△DCM(SAS),
∴BM=CM;
(2)四边形MENF是菱形.
证明:∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,NE=CM,
∵MF=CM,
∴NE=FM,
∵NE∥FM,
∴四边形MENF是平行四边形,
由(1)知△ABM≌△DCM,
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形;
(3)当AD:AB=2:1时,四边形MENF是正方形.
理由:∵M为AD中点,
∴AD=2AM,
∵AD:AB=2:1,
∴AM=AB,
∵∠A=90°
∴∠ABM=∠AMB=45°,
同理∠DMC=45°,
∴∠EMF=180°﹣45°﹣45°=90°,
∵四边形MENF是菱形,
∴菱形MENF是正方形,
即当AD:AB=2:1时,四边形MENF是正方形.
此题主要考查平行四边形、菱形以及正方形的判定条件,其中涉及全等三角形
26、(1)x=;(2)x≥-3.
【解析】
分析:(1)首先找出最简公分母,再去分母进而解方程得出答案;
(2)首先去括号,进而解不等式得出答案.
详解:(1)去分母得:x=3(x-3),
解得:x=,
检验:x=时,x(x-3)≠0,则x=是原方程的根;
(2)2(x-6)+4≤3x-5
2x-12+4≤3x-5,
解得:x≥-3,
如图所示:
.
点睛:此题主要考查了解分式方程以及解不等式,正确掌握解题步骤是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
课外阅读时间(单位:小时)
频数(人数)
频率
0<t≤2
2
0.04
2<t≤4
3
0.06
4<t≤6
15
0.30
6<t≤8
a
0.50
t>8
5
b
弹簧总长L(cm)
16
17
18
19
20
重物质量x(kg)
0.5
1.0
1.5
2.0
2.5
2024年四川省达州达川区四校联考数学九年级第一学期开学联考试题【含答案】: 这是一份2024年四川省达州达川区四校联考数学九年级第一学期开学联考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省达州市达川区九上数学开学调研模拟试题【含答案】: 这是一份2024-2025学年四川省达州市达川区九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省达州达川区四校联考2023-2024学年数学九年级第一学期期末联考试题含答案: 这是一份四川省达州达川区四校联考2023-2024学年数学九年级第一学期期末联考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,sin60°的值是,对于抛物线,下列结论,若将抛物线y=2等内容,欢迎下载使用。