2024年四川省达州市数学九上开学考试模拟试题【含答案】
展开这是一份2024年四川省达州市数学九上开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,点A的坐标是(3,-4),点B的坐标是(1,2),将线段AB平移后得到线段A'B'.若点A对应点A'的坐标是(5,2),则点B'的坐标是( )
A.(3,6)B.(3,7)C.(3,8)D.(6,4)
2、(4分)某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为,根据题意可列方程为( )
A.B.C.D.
3、(4分)如图,已知两直线l1:y=x和l2:y=kx﹣5相交于点A(m,3),则不等式x≥kx﹣5的解集为( )
A.x≥6B.x≤6C.x≥3D.x≤3
4、(4分)如图所示,正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E,G,连接GF,给出下列结论:
①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4 ,其中正确的结论个数有()
A.2个B.4个C.3个D.5个
5、(4分)下列方程是关于的一元二次方程的是( )
A.B.C.D.
6、(4分)甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( )
A.甲B.乙C.丙D.丁
7、(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )
A.2﹣B.1C.D.﹣l
8、(4分)如图,矩形的顶点在轴正半轴上、顶点在轴正半轴上,反比例函数的图象分别与、交于点、,连接、、,若,则的值为( )
A.2B.4C.6D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形中,对角线与相交于点,,,则的长为________.
10、(4分)已知54-1能被20~30之间的两个整数整除,则这两个整数是_________.
11、(4分)如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.
12、(4分)已知,化简二次根式的正确结果是_______________.
13、(4分)如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1).
(2).
15、(8分)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录内9个时间点冷柜中的温度(℃)随时间变化情况,制成下表:
(1)如图,在直角坐标系中,描出上表数据对应的点,并画出当时温度随时间变化的函数图象;
(2)通过图表分析发现,冷柜中的温度是时间的函数.
①当时,写出符合表中数据的函数解析式;
②当时,写出符合表中数据的函数解析式;
(3)当前冷柜的温度℃时,冷柜继续工作36分钟,此时冷柜中的温度是多少?
16、(8分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示
(1)本次共抽查学生____人,并将条形图补充完整;
(2)捐款金额的众数是_____,平均数是_____;
(3)在八年级700名学生中,捐款20元及以上(含20元)的学生估计有多少人?
17、(10分)如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.
18、(10分)如图,在△ABC中,D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数不经过第三象限,则k的取值范围是______
20、(4分)某公司有一名经理和10名雇员共11名员工,他们的月工资情况(单位:元)如下:30000,2350,2350,2250,2250,2250,2250,2150,2050,1950,1850.上述数据的平均数是__________,中位数是________.通过上面得到的结果不难看出:用_________(填“平均数”或“中位数”)更能准确地反映出该公司全体员工的月人均收入水平.
21、(4分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= _____.
22、(4分)如图,正方形的定点与正方形的对角线交点重合,正方形和正方形的边长都是,则图中重叠部分的面积是__________.
23、(4分)某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则购买这种地毯至少需要_____元.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y= 的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点 B、C,如果四边形OBAC是正方形.
(1)求一次函数的解析式。
(2)一次函数的图象与y轴交于点D.在x轴上是否存在一点P,使得PA+PD最小?若存在,请求出P点坐标及最小值;若不存在,请说明理由。
25、(10分)(1);
(2);
26、(12分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示.回答下列问题:
(1)机动车行驶几小时后,在途中加油站加油?
(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并求自变量t的取值范围;
(3)中途加油多少升?
(4)如果加油站距目的地还有320千米,车速为60千米/时,要到达目的地,油箱中的油是否够用?请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先由点A的平移结果判断出平移的方式,再根据平移的方式求出点B′的坐标即可.
【详解】
由点A (3,-4) 对应点A′ (5,2),知
点A向右平移了2个单位,再向上平移了6个单位,
所以,点B也是向右平移了2个单位,再向上平移了6个单位,
B(1,2)平移后,变成:B′(3,8),
故选C.
本题考查了平面直角坐标系中图形的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
2、D
【解析】
此题利用基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.
【详解】
由题意可列方程是:.
故选:D.
此题考查由实际问题抽象出一元二次方程,解题关键在于列出方程
3、B
【解析】
首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式
x≥kx-5的解集即可.
【详解】
解:将点A(m,3)代入y=得,=3,
解得,m=1,
所以点A的坐标为(1,3),
由图可知,不等式
≥kx-5的解集为x≤1.
故选:B.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.
4、C
【解析】
根据四边形ABCD为正方形,以及折叠的性质,可以直接得到∠ADG的角度,以及AE=FE,在△BEF中,EF<BE,可以得到2AE<AB,结合三角函数的定义对②作出判断;
在△AGD和△OGD中高相等,底不同,可以直接判断其大小,而四边形AEFG是菱形的判定需证得AE=EF=GF=AG;
要计算OG和BE的关系,我们需利用到中间量EF,即四边形AEFG的边长,可以转化出BE和OG的关系;
当已知△OGF的面积时,根据菱形的性质,可以求得OG的长,进而求出BE的长度,而AE的长度与GF相同,GF可由勾股定理得出,进而求出AB的长度,正方形ABCD的面积也出来了.
【详解】
∵四边形ABCD是正方形,
∴∠GAD=∠ADO=45°.
由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确;
∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,
∴AE=EF<BE,
∴AE<AB,
∴>2.故②错误;
∵∠AOB=90°,
∴AG=FG>OG.
∵△AGD与△OGD同高,
∴S△AGD>S△OGD.故③错误;
∵∠EFD=∠AOF=90°,
∴EF∥AC,
∴∠FEG=∠AGE.
∵∠AGE=∠FGE,
∴∠FEG=∠FGE,
∴EF=GF.
∵AE=EF,
∴AE=GF.
∵AE=EF=GF,AG=GF,
∴AE=EF=GF=AG,
∴四边形AEFG是菱形,故④正确;
∵四边形AEFG是菱形,
∴∠OGF=∠OAB=45°,
∴EF=GF=OG,
∴BE=EF=×OG=2OG.故⑤正确;
∵四边形AEFG是菱形,
∴AB∥GF,AB=GF.
∵∠BAO=45°,∠GOF=90°,
∴△OGF是等腰直角三角形.
∵S△OGF=1,
∴ OG=1,
解得OG=,
∴BE=2OG=2,
GF=,
∴AE=GF=2,
∴AB=BE+AE=2+2,
∴S四边形ABCD=AB =(2 +2) =12+8 .故⑥错误.
∴其中正确结论的序号是①④⑤,共3个.
故选C.
此题考查正方形的性质,折叠的性质,菱形的性质,三角函数,解题关键在于掌握各性质定理
5、C
【解析】
根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.
【详解】
A. 中含有4个未知数,所以错误;
B. 中含有分式,所以错误;
C. 化简得到,符合一元二次方程的定义,故正确;
D. 含有两个未知数,所以错误.
故选择C.
本题考查一元二次方程的定义,解题的关键是掌握一元二次方程必须满足四个条件.
6、B
【解析】
试题分析:乙和丙的平均数较高,甲和乙的方差较小,则选择乙比较合适.故选B.
考点:平均数和方差.
【详解】
请在此输入详解!
7、D
【解析】
∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
∴AD⊥BC,B′C′⊥AB,
∴AD=BC=1,AF=FC′=AC′=1,
∴DC′=AC′-AD=-1,
∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
故选D.
【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
8、D
【解析】
根据点的坐标特征得到,根据矩形面积公式、三角形的面积公式列式求出的关系,根据反比例函数图象上点的坐标特征得到,解方程得到答案.
【详解】
解:∵点, ∴,
则,
由题意得,,
整理得,,
∵点在反比例函数上, ∴,
解得,, 则,
故选:D.
本题考查的是反比例函数比例系数k的几何意义、反比例函数图象上点的坐标特征、矩形的性质、三角形的面积公式,掌握反比例函数比例系数k的几何意义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可.
【详解】
∵四边形ABCD是矩形,
∴OA=OB=OC=OD, ∠BAD=90°,
∵
∴△AOB是等边三角形,
∴OB=AB=1,
∴BD=2BO=2,
在Rt△BAD中,
故答案为
考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.
10、24,26
【解析】
将54-1利用分解因式的知识进行分解,再结合题目54-1能被20至30之间的两个整数整除即可得出答案.
【详解】
54−1=(5+1)(5−1)
∵54−1能被20至30之间的两个整数整除,
∴可得:5+1=26,5−1=24.
故答案为:24,26
此题考查因式分解的应用,解题关键在于掌握运算法则
11、AB=CD(答案不唯一)
【解析】
由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.
【详解】
解:添加条件为:AB=CD(答案不唯一);理由如下:
∵AB∥DC,AB=CD,
∴四边形ABCD是平行四边形,
∴AD=BC.
故答案为AB=CD(答案不唯一).
本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.
12、
【解析】
由题意:-a3b≥0,即ab≤0,
∵a<b,
∴a≤0<b;
所以原式=|a|=-a.
13、c>1
【解析】
根据关于x的一元二次方程没有实数根时△<0,得出△=(-6)2-4c<0,再解不等式即可.
【详解】
∵关于x的一元二次方程x2-6x+c=0(c是常数)没有实根,
∴△=(-6)2-4c<0,
即36-4c<0,
解得:c>1.
故答案为c>1.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);
【解析】
(1)先化简第二项,再合并同类二次根式即可;
(2)把分子、分母都乘以化简即可.
【详解】
解:(1)原式;
(2)原式
=.
本题考查了二次根式的加减,以及分母有理化,熟练掌握二次根式的加减法法则、分母有理化的方法是解答本题的关键.
15、(1)见详解;(2)①y=;②y=-4x+1;(3)-4°.
【解析】
(1)根据表格内容描点、画图、连线即可.
(2)①由x·y=-80,即可得出当4≤x<20时,y关于x的函数解析式;
②根据点(20,-4)、(21,-8),利用待定系数法求出y关于x的函数解析式,再代入其它点的坐标验证即可.
(3)根据表格数据,找出冷柜的工作周期为20分钟,由此即可得出答案.
【详解】
(1)如图所示:
(2)①根据图象可知,图象接近反比例函数图象的一部分,设y=,过点(8,-10),
∴k=-80,
∴y=(4≤x<20).
②根据图象可知,图象接近直线,设y=kx+b,过点(20,-4),(21,-8),
∴y=-4x+1.
(3)∵因温度的变化,20分钟一个周期,
∴36=20+16
∴冷柜连续工作36分钟时,在反比例函数变化范围内,故温度为-4°.
本题主要考查一次函数和反比例的解析式,以及应用.
16、 (1)50;补图见解析;(2)10,13.1;(3)154人.
【解析】
(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;
(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;
(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.
【详解】
(1)本次抽查的学生有:14÷28%=50(人),
则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:
故答案为50;
(2)由条形图可知,捐款10元人数最多,故众数是10;
这组数据的平均数为: =13.1;
故答案为10,13.1.
(3)捐款20元及以上(含20元)的学生有:×700=154(人);
此题考查条形统计图;用样本估计总体;扇形统计图;加权平均数;众数,解题关键在于看懂图中数据
17、见解析
【解析】
【分析】由正方形性质和垂直定义,根据AAS证明△ABF≌△DAE,得BF=AE.DE=AF,
可得结论.
【详解】解:∵ABCD是正方形,∴AD=AB,∠BAD=90°,
∵DE⊥AG,∴∠DEG=∠AED=90°∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,∴∠ADE=BAF.
∵BF∥DE,∴∠AFB=∠DEG=∠AED.
在△ABF与△DAE中,
AD=AB,
∴△ABF≌△DAE(AAS).
∴BF=AE.DE=AF,
∵AF=AE+EF,
∴DE=BF+EF.
【点睛】本题考核知识点:正方形性质.解题关键点:证三角形全等得对应线段相等.
18、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可.
(2)根据平行四边形的对角线相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.
试题解析:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线.
∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形.
(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC.
∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF.
∴∠DAH=∠DHA,∠FAH=∠FHA.
∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,
∴∠DHF=∠BAC.∴∠DHF=∠DEF.
考点:1.三角形中位线定理;2.直角三角形斜边上的中线性质;3.平行四边形的判定.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.
【详解】
解:∵一次函数y=kx+2的图象不经过第三象限,
∴一次函数y=kx+2的图象经过第一、二、四象限,
∴k<1.
故答案为:k<1.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.
20、4700 2250 中位数
【解析】
分析:
根据“平均数”、“中位数”的定义和计算方法进行计算判断即可.
详解:
(1)这组数据的平均数为:
(30000+2350+2350+2250+2250+2250+2250+2150+2050+1950+1850)÷11
=4700(元);
(2)由题中数据可知,这组数据按从大到小的顺序排列后,排在最中间的一个数是2250元,
∴这组数据的中位数是:2250;
(3)∵这组数据中多数数据更接近中位数2250,且都与平均数相差较多,
∴用“中位数”更能反映出该公司全体员工的月人均收入水平.
综上所述:本题答案为:(1)4700;(2)2250;(3)中位数.
点睛:熟记“平均数、中位数的定义和计算方法”是正确解答本题的关键.
21、20°
【解析】
解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为20°.
点睛:本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.
22、
【解析】
根据题意可得重叠部分的面积和面积相等,求出面积即可.
【详解】
解:如图,
四边形和是正方形
又
故答案为:1
本题考查了正方形的性质,将重叠部分的面积进行转化是解题的关键.
23、1
【解析】
解:已知直角三角形的一条直角边是3m,斜边是5m,根据勾股定理得到:水平的直角边是4m,地毯水平的部分的和是水平边的长,竖直的部分的和是竖直边的长,则购买这种地毯的长是3m+4m=7m,则面积是14m2,价格是14×30=1元.故答案为1.
二、解答题(本大题共3个小题,共30分)
24、(1)y=x+1;(2)(,0)
【解析】
(1)若四边形OBAC是正方形,那么点A的横纵坐标相等,代入反比例函数即可求得点A的坐标,进而代入一次函数即可求得未知字母k.
(2)在y轴负半轴作OD′=OD,连接AD′,与x轴的交点即为P点的坐标,进而求出P点的坐标.
【详解】
(1)∵四边形OBAC是正方形,
∴S四边形OBAC=AB =OB=9,
∴点A的坐标为(3,3),
∵一次函数y=kx+1的图象经过A点,
∴3=3k+1,
解得k=,
∴一次函数的解析式y=x+1,
(2)y轴负半轴作OD′=OD,连接AD′,如图所示,AD′与x轴的交点即为P点的坐标,
∵一次函数的解析式y=x+1,
∴D点的坐标为(0,1),
∴D′的坐标为(0,−1),
∵A点坐标为(3,3),
设直线AD′的直线方程为y=mx+b,
即 ,
解得m= ,b=−1,
∴直线AD′的直线方程为y=x−1,
令y=0,解得x= ,
∴P点坐标为(,0)
此题考查反比例函数综合题,解题关键在于熟练掌握一次函数和反比例函数的性质.
25、(1);(2)
【解析】
根据二次根式的运算法则,进行计算即可.
【详解】
(1)原式
(2)原式=
=
=
此题主要考查二次根式的运算,熟练掌握,即可解题.
26、(1)机动车行驶5小时后加油;(2)Q=42-6t(0≤t≤5);(3)中途加油24升;(4)油箱中的油够用,理由详见解析
【解析】
(1)观察函数图象,即可得出结论;
(2)根据每小时耗油量=总耗油量÷行驶时间,即可求出机动车每小时的耗油量,再根据加油前油箱剩余油量=42−每小时耗油量×行驶时间,即可得出结论;
(3)根据函数图象中t=5时,Q值的变化,即可求出中途加油量;
(4)根据可行驶时间=油箱剩余油量÷每小时耗油量,即可求出续航时间,由路程=速度×时间,即可求出续航路程,将其与320比较后即可得出结论.
【详解】
解:(1)观察函数图象可知:机动车行驶5小时后加油.
(2)机动车每小时的耗油量为(42-12)÷5=6(升),
∴加油前油箱剩余油量Q与行驶时间t的函数关系为Q=42-6t(0≤t≤5)
(3)36-12=24(升).
∴中途加油24升.
(4)油箱中的油够用.
理由:
∵加油后油箱里的油可供行驶11-5=6(小时),
∴剩下的油可行驶6×60=360(千米).
∵360>320,
∴油箱中的油够用.
本题考查了一次函数的应用,解题的关键是:(1)观察函数图象找出结论;(2)根据数量关系,列出函数关系式;(3)根据数量关系,列式计算;(4)利用路程=速度×时间,求出可续航路程.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
平均数
80
85
85
80
方 差
42
42
54
59
时间
…
4
8
10
16
20
21
22
23
24
…
温度/℃
…
…
相关试卷
这是一份2024年四川省成都市青羊区九上数学开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年四川省巴中市名校数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
这是一份2024年安徽省淮南地区九上数学开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。