|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年四川省成都市北大附中成都为明学校九上数学开学经典模拟试题【含答案】
    立即下载
    加入资料篮
    2024年四川省成都市北大附中成都为明学校九上数学开学经典模拟试题【含答案】01
    2024年四川省成都市北大附中成都为明学校九上数学开学经典模拟试题【含答案】02
    2024年四川省成都市北大附中成都为明学校九上数学开学经典模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年四川省成都市北大附中成都为明学校九上数学开学经典模拟试题【含答案】

    展开
    这是一份2024年四川省成都市北大附中成都为明学校九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一个正多边形每个外角都是30°,则这个多边形边数为( )
    A.10B.11C.12D.13
    2、(4分)下列多项式中,可以提取公因式的是( )
    A.ab+cdB.mn+m2
    C.x2-y2D.x2+2xy+y2
    3、(4分)下列几组数中,能作为直角三角形三边长度的是( )
    A.2,3,4B.4,5,6C.6,8,11D.5,12,13
    4、(4分)如图,正方形纸片ABCD的边长为4 cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是( )
    \
    A.2 cmB.4 cmC. cmD.1 cm
    5、(4分)下列各式中是分式方程的是( )
    A.B.C.D.
    6、(4分)如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=( )
    A.282°B.180°C.258°D.360°
    7、(4分)一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是
    A.40B.20C.10D.25
    8、(4分)下列图形中,不是中心对称图形的是( )
    A.平行四边形B.矩形C.菱形D.等边三角形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“<”或“=”).
    10、(4分)一运动员推铅球,铅球经过的路线为如图所示的抛物线,则铅球所经过的路线的函数表达式为________
    11、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是______.
    12、(4分)二次根式有意义的条件是______________.
    13、(4分)当x=2时,二次根式的值为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在正方形中,点是对角线上一点,且,过点作交于点,连接.
    (1)求证:;
    (2)当时,求的值.
    15、(8分)如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
    (1)求k的值;
    (2)若△BCD的面积为12,求直线CD的解析式;
    (3)判断AB与CD的位置关系,并说明理由.
    16、(8分)解不等式组,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.
    17、(10分)如图,在中,,,点在延长线上,点在上,且,延长交于点,连接、.
    (1)求证:;
    (2)若,则__________.
    18、(10分)如图,在▱ABCD中,E,F分别是边AB,CD的中点,求证:AF=CE.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一张矩形纸片ABCD,已知,.小明按所给图步骤折叠纸片,则线段DG长为______.
    20、(4分)若是整数,则最小的正整数n的值是_____________。
    21、(4分)如图,在中,,将绕顶点顺时针旋转,旋转角为,得到.设中点为,中点为,,连接,当____________时,长度最大,最大值为____________.
    22、(4分)如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则_________. _________.
    23、(4分)学校开展的“争做最美中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:
    那么这五位同学演讲成绩的众数是_____,中位数是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.
    (1)求证:四边形DEFG是平行四边形;
    (2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.
    25、(10分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.
    26、(12分)王老师为了了解学生在数学学习中的纠错情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年级(5)班和八年级(6)班进行了检测.并从两班各随机抽取10名学生的得分绘制成下列两个统计图.根据以上信息,整理分析数据如下:
    (1)求出表格中a,b,c的值;
    (2)你认为哪个班的学生纠错得分情况比较整齐一些,通过计算说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.
    解答:360°÷30°=1.
    故选C.
    “点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.
    2、B
    【解析】
    直接利用提取公因式法分解因式的步骤分析得出答案.
    【详解】
    解:A.ab+cd,没有公因式,故此选项错误;
    B.mn+m2=m(n+m),故此选项正确;
    C.x2﹣y2,没有公因式,故此选项错误;
    D.x2+2xy+y2,没有公因式,故此选项错误.
    故选B.
    本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.
    3、D
    【解析】
    欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:A、22+32≠42,故不是直角三角形,故错误;
    B、42+52≠62,故不是直角三角形,故错误;
    C、62+82≠112,故不是直角三角形,故错误;
    D、52+122=132,故是直角三角形,故正确.
    故选D.
    4、A
    【解析】
    如图,取AB,CD的中点K,G,连接KG,BD交于点O,由题意知,点Q运动的路线是线段OG,因为DO=OB,所以DG=GC,所以OG=BC=×4=2,所以点Q移动路线的最大值是2,故选A.
    5、D
    【解析】
    根据分式方程的定义,即可得出答案.
    【详解】
    A不是方程,故此选项错误;B是方程,但不是分式方程,故此选项错误;C是一元一次方程,不是分式方程,故此选项错误;D是分式方程,故答案选择D.
    本题考查的是分式方程的定义,分式方程的定义:①形如的式子;②其中A,B均为整式,且B中含有字母.
    6、C
    【解析】
    先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.
    【详解】
    如图,
    ∵∠1、∠2是△CDE的外角,
    ∴∠1=∠4+∠C,∠2=∠3+∠C,
    即∠1+∠2=∠C+(∠C+∠3+∠4)=78°+180°=258°.
    故选C.
    此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.
    7、B
    【解析】
    根据菱形的面积=对角线之积的一半,可知菱形的面积为5×8÷2=20.
    故选B.
    8、D
    【解析】
    根据中心对称图形的概念中心对称图形是图形沿对称中心旋转180度后与原图重合.
    【详解】
    解:A、平行四边形是中心对称图形,故本选项错误;
    B、矩形是中心对称图形,故本选项错误;
    C、菱形是中心对称图形,故本选项错误;
    D、等边三角形不是中心对称图形,故本选项正确.
    故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、>
    【解析】
    分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
    【详解】
    ∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,
    ∴y1=-3,y1=-6,
    ∵-3>-6,
    ∴y1>y1.
    10、
    【解析】
    由抛物线的顶点坐标为(4,3),可设其解析式为,再将(0,)代入求出a的值即可.
    【详解】
    解:由图知,抛物线的顶点坐标为(4,3),
    故设抛物线解析式为,
    将点(0,)代入,得:,
    解得,
    则抛物线解析式为,
    故答案为:.
    本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
    11、
    【解析】
    根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CHAF.在Rt△AMF中,根据勾股定理求出AF即可.
    【详解】
    ∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M.连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°.
    ∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°.
    ∵H为AF的中点,∴CHAF.在Rt△AMF中,由勾股定理得:AF,∴CH.
    故答案为.
    本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解答此题的关键是能正确作出辅助线,并求出AF的长和得出CHAF,有一定的难度.
    12、x≥1
    【解析】
    根据被开方数大于等于0列式计算即可得解.
    【详解】
    由题意得,x−1⩾0,
    解得x⩾1.
    故答案为:x⩾1.
    此题考查二次根式有意义的条件,解题关键在于掌握被开方数大于等于0
    13、3
    【解析】
    【分析】把x=2代入二次根式进行计算即可得.
    【详解】把x=2代入得,
    ==3,
    故答案为:3.
    【点睛】本题考查了二次根式的值,准确计算是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)详见解析;(2)
    【解析】
    (1)连接CF,利用HL证明Rt△CDF≌Rt△CEF,可得DF=EF,再根据等腰直角三角形可得EF=AF,所以得出DF=AE.
    (2) 过点E作EH⊥AB于H,利用勾股定理求出AC,再求出AE,根据特殊直角三角形的边长比求出EH和AH,可得BH,再利用勾股定理求出BE2即可.
    【详解】
    (1)连接CF,
    ∵∠D=∠CEF=90°,CD=CE,CF=CF,
    ∴Rt△CDF≌Rt△CEF(HL),
    ∴DF=EF,
    ∵AC为正方形ABCD的对角线,
    ∴∠CAD=45°,
    ∴△AEF为等腰直角三角形,
    ∴EF=AF,
    ∴DF=AE.
    (2) ∵AB=2+,
    ∴由勾股定理得AC=2+2,
    ∵CE=CD,
    ∴AE=.
    过点E作EH⊥AB于H,则△AEH是等腰直角三角形.
    ∴EH=AH=AE=×=1.
    ∴BH=2+-1=1+.
    在Rt△BEH中,BE2=BH2+EH2=(1+)2+12=4+2.
    本题考查正方形的性质、三角形全等的性质和判定,关键在于熟练掌握基础知识灵活运用.
    15、(1)k=6;
    (2)直线CD的解析式为;
    (3)AB∥CD,理由见解析.
    【解析】
    (1)把点D的坐标代入双曲线解析式,进行计算即可得解.
    (2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答.
    (3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.
    【详解】
    解:(1)∵双曲线经过点D(6,1),∴,解得k=6.
    (2)设点C到BD的距离为h,
    ∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,∴S△BCD=×6•h=12,解得h=4.
    ∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1-4= -3.
    ∴,解得x= -2.∴点C的坐标为(-2,-3).
    设直线CD的解析式为y=kx+b,
    则,解得.
    ∴直线CD的解析式为.
    (3)AB∥CD.理由如下:
    ∵CA⊥x轴,DB⊥y轴,点C的坐标为(-2,-3),点D的坐标为(6,1),
    ∴点A、B的坐标分别为A(-2,0),B(0,1).
    设直线AB的解析式为y=mx+n,
    则,解得.
    ∴直线AB的解析式为.
    ∵AB、CD的解析式k都等于相等.
    ∴AB与CD的位置关系是AB∥CD.
    16、;见解析;.
    【解析】
    首先求出每个不等式的解集,找到公共解集,然后在数轴上表示出来,根据数轴写出正整数解即可.
    【详解】
    解: ,
    解不等式①,得
    解不等式②,得
    所以,原不等式组的解集是
    在数轴上表示为:
    不等式组的正整数解是
    本题考查解一元一次不等式组、在数轴上表示不等式组的解集、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式组的方法.
    17、(1)见解析;(2)75°
    【解析】
    (1)证明Rt△ABE≌Rt△CBF,即可得到结论;
    (2)由Rt△ABE≌Rt△CBF证得BE=BF,∠BEA=∠BFC,求出∠BFE=∠BEF=45°,B、E、G、F四点共圆,根据圆周角定理得到∠BGF=∠BEF=45°即可求出答案.
    【详解】
    (1)∵,
    ∴∠CBF=,
    在Rt△ABE和Rt△CBF中,

    ∴Rt△ABE≌Rt△CBF,
    ∴BE=BF;
    (2)∵BE=BF,∠CBF=90°,
    ∴∠BFE=∠BEF=45°,
    ∵Rt△ABE≌Rt△CBF,
    ∴∠BEA=∠BFC,
    ∵∠BEA+∠BAE=90°,
    ∴∠BFC+∠BAE=90°,
    ∴∠AGF=90°,
    ∵∠AEB+∠BEG=180°,
    ∴∠BEG+∠BFG=180°,
    ∵∠AGF+∠FBC=180°,
    ∴B、E、G、F四点共圆,
    ∵BE=BF,
    ∴∠BGF=∠BEF=45°,
    ∵∠GBF=60°,
    ∴∠GFB=180°-∠GBF-∠BGF=75°,
    故答案为:75°.
    此题考查全等三角形的判定与性质,等腰三角形的性质,四点共圆的判定,三角形的内角和定理,证明四点共圆是解此题的关键.
    18、见解析.
    【解析】
    方法一:先根据平行四边形的性质及中点的定义得出AE=FC,AE∥FC,再根据一组对边平行且相等的四边形是平行四边形证出四边形AECF是平行四边形,然后根据平行四边形的对边相等得出AF=CE;
    方法二:先利用“边角边”证明△ADF≌△CBE,再根据全等三角形的对应边相等得出AF=CE.
    【详解】
    证明:(证法一):
    ∵四边形ABCD为平行四边形,
    ∴AB∥CD,AB=CD,
    又∵E、F是AB、CD的中点,
    ∴AE=AB,CF=CD,
    ∴AE=CF,AE∥CF,
    ∴四边形AECF是平行四边形,
    ∴AF=CE.
    (证法二):
    ∵四边形ABCD为平行四边形,
    ∴AB=CD,AD=BC,∠B=∠D,
    又∵E、F是AB、CD的中点,
    ∴BE=AB,DF=CD,
    ∴BE=DF,
    ∴△ADF≌△CBE(SAS),
    ∴AF=CE.
    本题考查了证明两条线段相等的方法,一般来说,可以证明这两条线段是一个平行四边形的一组对边,也可以证明这两条线段所在的三角形全等.注意根据题目的已知条件,选择合理的判断方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    首先证明△DEA′是等腰直角三角形,求出DE,再说明DG=GE即可解决问题.
    【详解】
    解:由翻折可知:DA′=A′E=4,
    ∵∠DA′E=90°,
    ∴DE=,
    ∵A′C′=2=DC′,C′G∥A′E,
    ∴DG=GE=,
    故答案为:.
    本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    20、1
    【解析】
    是整数则1n一定是一个完全平方数,把1分解因数即可确定.
    【详解】
    解:∵1=1×1,
    ∴n的最小值是1.
    故答案为:1.
    本题考查了二次根式的定义:一般地,我们把形如a(a≥0)的式子叫做二次根式.也考查了=|a|.
    21、 3
    【解析】
    连接CP,当点E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.
    【详解】
    ∵,,
    ∴AB=4,∠A=60°,
    由旋转得=∠A=60°,=AB=4,
    ∵中点为,
    ∴=2,
    ∴△是等边三角形,
    ∴∠=60°,
    如图,连接CP,当旋转到点E、C、P三点共线时,EP最长,此时,
    ∵点E是AC的中点,,
    ∴CE=1,
    ∴EP=CE+PC=3,
    故答案为: 120,3.
    此题考查直角三角形的性质,等边三角形的判定及性质,旋转的性质,解题中首先确定解题思路,根据旋转得到EP的最大值即是CE+PC在进行求值,确定思路是解题的关键.
    22、
    【解析】
    在△AB1D2中利用30°角的性质和勾股定理计算出AD2=,再根据菱形的性质得AB2=AD2=,同理可求AD3和 AD4的值.
    【详解】
    解:在△AB1D2中,
    ∵,
    ∴∠B1AD2=30°,
    ∴B1D2=,
    ∴AD2==,
    ∵四边形AB2C2D2为菱形,
    ∴AB2=AD2=,
    在△AB2D3中,
    ∵,
    ∴∠B2AD3=30°,
    ∴B2D3=,
    ∴AD3== ,
    ∵四边形AB3C3D3为菱形,
    ∴AB3=AD3=,
    在△AB3D4中,
    ∵,
    ∴∠B3AD4=30°,
    ∴B3D4=,
    ∴AD4==,
    故答案为,.
    本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形的面积等于对角线乘积的一半.也考查了锐角三角函数的知识.
    23、86, 1
    【解析】
    根据众数和中位数的定义求解可得.
    【详解】
    由表可知,这6为同学的成绩分别为:86、86、1、93、96,
    则众数为86,中位数为1,
    故答案为:86,1.
    此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)1
    【解析】
    (1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DG=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可.
    (2)想办法证明OM=MF=ME即可解决问题.
    【详解】
    (1)证明:∵D、G分别是AB、AC的中点,
    ∴DG∥BC,DG=BC,
    ∵E、F分别是OB、OC的中点,
    ∴EF∥BC,EF=BC,
    ∴DG=EF,DG∥EF,
    ∴四边形DEFG是平行四边形;
    (2)∵OB⊥OC,
    ∴∠BOC=90°,
    ∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,
    ∴∠COM=∠OCB,
    ∵EF∥BC,
    ∴∠OFE=∠OCB,
    ∴∠MOF=∠MFO,
    ∴OM=MF,
    ∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,
    ∴∠EOM=∠MEO,
    ∴OM=EM,
    ∴EF=2OM=1.
    由(1)有四边形DEFG是平行四边形,
    ∴DG=EF=1.
    本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.
    25、BC边上的高AD=.
    【解析】
    作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.
    【详解】
    作AD⊥BC于D,
    由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,
    ∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,
    解得,CD=1,
    则BC边上的高AD=.
    考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
    26、(1)24,27,27(2)5班学生纠错得分情况比较整齐一些
    【解析】
    (1)将条形统计图中数据相加再除以10,即可得到样本平均数;找到折线统计图中出现次数最多的数和处于中间位置的数,即为众数和中位数;
    (2)计算出两个班的方差,方差越小越整齐.
    【详解】
    解:(1)八年级(5)班:(21×3+24×4+27×3)=24,
    ∴a=24,
    八年级(6)班得分:21 27 15 27 30 27 18 27 30 18
    从小到大排列:15 18 18 21 27 27 27 27 30 30
    ∴中位数b=27,众数c=27
    (2)八年级(5)班的方差:(9×3+0×4+9×3)=5.4,
    八年级(6)班的方差:(81+36×3+9+9×4+36×2)=30.6,
    ∵(5)班的方差小,
    ∴(5)班学生纠错得分情况比较整齐一些
    本题考查了条形统计图,方差、算术平均数、众数和中位数,熟悉各统计量的意义及计算方法是解题的关键.
    题号





    总分
    得分
    批阅人
    班级
    平均分(分)
    中位数(分)
    众数(分)
    八年级(5)班
    a
    24
    24
    八年级(6)班
    24
    b
    c
    相关试卷

    2024-2025学年北大附中数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年北大附中数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省北大附中成都为明学校2023-2024学年数学九上期末统考模拟试题含答案: 这是一份四川省北大附中成都为明学校2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了若均为锐角,且,则.等内容,欢迎下载使用。

    四川省北大附中成都为明学校2023-2024学年八上数学期末质量跟踪监视试题含答案: 这是一份四川省北大附中成都为明学校2023-2024学年八上数学期末质量跟踪监视试题含答案,共6页。试卷主要包含了下列分式的约分中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map