|试卷下载
搜索
    上传资料 赚现金
    2022年四川省北大附中成都为明校中考一模数学试题含解析
    立即下载
    加入资料篮
    2022年四川省北大附中成都为明校中考一模数学试题含解析01
    2022年四川省北大附中成都为明校中考一模数学试题含解析02
    2022年四川省北大附中成都为明校中考一模数学试题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省北大附中成都为明校中考一模数学试题含解析

    展开
    这是一份2022年四川省北大附中成都为明校中考一模数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,计算的值,的相反数是等内容,欢迎下载使用。

    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(共10小题,每小题3分,共30分)
    1.若,则的值为( )
    A.﹣6 B.6 C.18 D.30
    2.若一个多边形的内角和为360°,则这个多边形的边数是( )
    A.3 B.4 C.5 D.6
    3.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为( )
    A.3B.4C.6D.8
    4.下列计算正确的是( )
    A.﹣5x﹣2x=﹣3xB.(a+3)2=a2+9C.(﹣a3)2=a5D.a2p÷a﹣p=a3p
    5.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是( )
    A.15°B.30°C.45°D.60°
    6.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )
    A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°
    C.∠1=30°,∠1=60°D.∠1=∠1=45°
    7.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为( )
    A.5cmB.5cm或3cmC.7cm或3cmD.7cm
    8.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
    A.B.
    C.D.
    9.计算的值( )
    A.1B.C.3D.
    10.的相反数是( )
    A.2B.﹣2C.4D.﹣
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.
    12.分解因式:xy2﹣2xy+x=_____.
    13.分解因式:x2-9=_ ▲ .
    14.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.
    15.当时,直线与抛物线有交点,则a的取值范围是_______.
    16.将2.05×10﹣3用小数表示为__.
    三、解答题(共8题,共72分)
    17.(8分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.
    (1)求证:DF是BF和CF的比例中项;
    (2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.
    18.(8分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根
    19.(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
    (1)求新传送带AC的长度;
    (2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
    20.(8分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.
    (I)如图①,若∠F=50°,求∠BGF的大小;
    (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.
    21.(8分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.
    22.(10分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.
    (1)求抛物线y=x2+bx+c的解析式.
    (2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.
    ①结合函数的图象,求x3的取值范围;
    ②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.
    23.(12分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
    求证:四边形是菱形若,,求四边形的面积
    24.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
    求证:AB=DC;试判断△OEF的形状,并说明理由.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题分析:∵,即,∴原式==
    ===﹣12+18=1.故选B.
    考点:整式的混合运算—化简求值;整体思想;条件求值.
    2、B
    【解析】
    利用多边形的内角和公式求出n即可.
    【详解】
    由题意得:(n-2)×180°=360°,
    解得n=4;
    故答案为:B.
    【点睛】
    本题考查多边形的内角和,解题关键在于熟练掌握公式.
    3、D
    【解析】
    连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.
    【详解】
    连接OA.
    ∵⊙O的半径为5,CD=2,
    ∵OD=5-2=3,即OD=3;
    又∵AB是⊙O的弦,OC⊥AB,
    ∴AD=AB;
    在直角三角形ODC中,根据勾股定理,得
    AD==4,
    ∴AB=1.
    故选D.
    【点睛】
    本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.
    4、D
    【解析】
    直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案.
    【详解】
    解:A.﹣5x﹣2x=﹣7x,故此选项错误;
    B.(a+3)2=a2+6a+9,故此选项错误;
    C.(﹣a3)2=a6,故此选项错误;
    D.a2p÷a﹣p=a3p,正确.
    故选D.
    【点睛】
    本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键.
    5、B
    【解析】
    只要证明△OCB是等边三角形,可得∠CDB=∠COB即可解决问题.
    【详解】
    如图,连接OC,
    ∵AB=14,BC=1,
    ∴OB=OC=BC=1,
    ∴△OCB是等边三角形,
    ∴∠COB=60°,
    ∴∠CDB=∠COB=30°,
    故选B.
    【点睛】
    本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.
    6、D
    【解析】
    能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.
    【详解】
    “如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.
    故选:D.
    【点睛】
    考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.
    7、B
    【解析】
    (1)如图1,当点C在点A和点B之间时,
    ∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
    ∴MB=AB=4cm,BN=BC=1cm,
    ∴MN=MB-BN=3cm;
    (2)如图2,当点C在点B的右侧时,
    ∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
    ∴MB=AB=4cm,BN=BC=1cm,
    ∴MN=MB+BN=5cm.
    综上所述,线段MN的长度为5cm或3cm.
    故选B.
    点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.
    8、B
    【解析】
    分析:根据轴对称图形与中心对称图形的概念求解即可.
    详解:A.是轴对称图形,不是中心对称图形;
    B.是轴对称图形,也是中心对称图形;
    C.是轴对称图形,不是中心对称图形;
    D.是轴对称图形,不是中心对称图形.
    故选B.
    点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    9、A
    【解析】
    根据有理数的加法法则进行计算即可.
    【详解】
    故选:A.
    【点睛】
    本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.
    10、A
    【解析】
    分析:根据只有符号不同的两个数是互为相反数解答即可.
    详解:的相反数是,即2.
    故选A.
    点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、∠A=∠C或∠ADC=∠ABC
    【解析】
    本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.
    【详解】
    添加条件可以是:∠A=∠C或∠ADC=∠ABC.
    ∵添加∠A=∠C根据AAS判定△AOD≌△COB,
    添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,
    故填空答案:∠A=∠C或∠ADC=∠ABC.
    【点睛】
    本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.
    12、x(y-1)2
    【解析】
    分析:先提公因式x,再用完全平方公式把继续分解.
    详解:
    =x()
    =x()2.
    故答案为x()2.
    点睛:本题考查了因式分解,有公因式先提公因式,然后再用公式法继续分解,因式分解必须分解到每个因式都不能再分解为止.
    13、 (x+3)(x-3)
    【解析】
    x2-9=(x+3)(x-3),
    故答案为(x+3)(x-3).
    14、
    【解析】
    如图,有5种不同取法;故概率为 .
    15、
    【解析】
    直线与抛物线有交点,则可化为一元二次方程组利用根的判别式进行计算.
    【详解】
    解:法一:与抛物线有交点
    则有,整理得
    解得
    ,对称轴
    法二:由题意可知,
    ∵抛物线的 顶点为,而
    ∴抛物线y的取值为
    ,则直线y与x轴平行,
    ∴要使直线与抛物线有交点,
    ∴抛物线y的取值为,即为a的取值范围,

    故答案为:
    【点睛】
    考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.
    16、0.1
    【解析】试题解析:原式=2.05×10-3=0.1.
    【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向右移几位;n<0时,n是几,小数点就向左移几位.
    三、解答题(共8题,共72分)
    17、证明见解析
    【解析】
    试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;
    (2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得 ,
    由(1)可得 ,从而得 ,问题得证.
    试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
    ∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
    ∵E是AC的中点,
    ∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
    ∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
    又∵∠BFD=∠DFC,
    ∴△BFD∽△DFC,
    ∴BF:DF=DF:FC,
    ∴DF2=BF·CF;
    (2)∵AE·AC=ED·DF,
    ∴ ,
    又∵∠A=∠A,
    ∴△AEG∽△ADC,
    ∴∠AEG=∠ADC=90°,
    ∴EG∥BC,
    ∴ ,
    由(1)知△DFD∽△DFC,
    ∴ ,
    ∴ ,
    ∴EG·CF=ED·DF.
    18、2m2+2m+5;1;
    【解析】
    先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.
    【详解】
    解:原式=2(m2﹣2m+1)+1m+3,
    =2m2﹣4m+2+1m+3=2m2+2m+5,
    ∵m是方程2x2+2x﹣1=0的根,
    ∴2m2+2m﹣1=0,即2m2+2m=1,
    ∴原式=2m2+2m+5=1.
    【点睛】
    此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.
    19、(1)5.6
    (2)货物MNQP应挪走,理由见解析.
    【解析】
    (1)如图,作AD⊥BC于点D
    Rt△ABD中,
    AD=ABsin45°=4
    在Rt△ACD中,∵∠ACD=30°
    ∴AC=2AD=4
    即新传送带AC的长度约为5.6米.
    (2)结论:货物MNQP应挪走.
    在Rt△ABD中,BD=ABcs45°=4
    在Rt△ACD中,CD=ACcs30°=
    ∴CB=CD—BD=
    ∵PC=PB—CB ≈4—2.1=1.9<2
    ∴货物MNQP应挪走.
    20、(I)65°;(II)72°
    【解析】
    (I)如图①,连接OB,先利用切线的性质得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF的度数;
    (II)如图②,连接OB,BO的延长线交AC于H,利用切线的性质得OB⊥BF,再利用AC∥BF得到BH⊥AC,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG的度数.
    【详解】
    解:(I)如图①,连接OB,
    ∵BF为⊙O的切线,
    ∴OB⊥BF,
    ∴∠OBF=90°,
    ∵OA⊥CD,
    ∴∠OED=90°,
    ∴∠AOB=180°﹣∠F=180°﹣50°=130°,
    ∵OA=OB,
    ∴∠1=∠A=(180°﹣130°)=25°,
    ∴∠2=90°﹣∠1=65°,
    ∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;
    (II)如图②,连接OB,BO的延长线交AC于H,
    ∵BF为⊙O的切线,
    ∴OB⊥BF,
    ∵AC∥BF,
    ∴BH⊥AC,
    与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,
    ∵OA=OB,
    ∴∠OBA=∠OAB=(180°﹣144°)=18°,
    ∵∠AOB=∠OHA+∠OAH,
    ∴∠OAH=144°﹣90°=54°,
    ∴∠BAC=∠OAH+∠OAB=54°+18°=72°,
    ∴∠BDG=∠BAC=72°.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.
    21、;2.
    【解析】
    先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.
    【详解】
    解:原式=
    =
    =
    的非负整数解有:2,1,0,
    其中当x取2或1时分母等于0,不符合条件,故x只能取0
    ∴将x=0代入得:原式=2
    【点睛】
    本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.
    22、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.
    【解析】
    (2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.
    【详解】
    (2)在y=﹣x+3中,令x=2,则y=3;
    令y=2,则x=3;得B(3,2),C(2,3),
    将点B(3,2),C(2,3)的坐标代入y=x2+bx+c
    得:,解得
    ∴y=x2﹣4x+3;
    (2)∵直线l2平行于x轴,
    ∴y2=y2=y3=m,
    ①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,
    ∴顶点为D(2,﹣2),
    当直线l2经过点D时,m=﹣2;
    当直线l2经过点C时,m=3
    ∵x2>x2>2,
    ∴﹣2<y3<3,
    即﹣2<﹣x3+3<3,
    得2<x3<4,
    ②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,
    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.
    ∵x2>x2>2,
    ∴x3﹣x2=x2﹣x2,
    即 x3=2x2﹣x2,
    ∵l2∥x轴,即PQ∥x轴,
    ∴点P、Q关于抛物线的对称轴l2对称,
    又抛物线的对称轴l2为x=2,
    ∴2﹣x2=x2﹣2,
    即x2=4﹣x2,
    ∴x3=3x2﹣4,
    将点Q(x2,y2)的坐标代入y=x2﹣4x+3
    得y2=x22﹣4x2+3,又y2=y3=﹣x3+3
    ∴x22﹣4x2+3=﹣x3+3,
    ∴x22﹣4x2=﹣(3x2﹣4)
    即 x22﹣x2﹣4=2,解得x2=,(负值已舍去),
    ∴m=()2﹣4×+3=
    如图②,当直线l2在x轴的上方时,点N在点P、Q之间,
    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.
    由上可得点P、Q关于直线l2对称,
    ∴点N在抛物线的对称轴l2:x=2,
    又点N在直线y=﹣x+3上,
    ∴y3=﹣2+3=2,即m=2.
    故m的值为或2.
    【点睛】
    本题是二次函数综合题,
    本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.
    23、(1)见解析;(2)S四边形ADOE =.
    【解析】
    (1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
    (2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
    【详解】
    (1)证明:∵矩形ABCD,
    ∴OA=OB=OC=OD.
    ∵平行四边形ADOE,
    ∴OD∥AE,AE=OD.
    ∴AE=OB.
    ∴四边形AOBE为平行四边形.
    ∵OA=OB,
    ∴四边形AOBE为菱形.
    (2)解:∵菱形AOBE,
    ∴∠EAB=∠BAO.
    ∵矩形ABCD,
    ∴AB∥CD.
    ∴∠BAC=∠ACD,∠ADC=90°.
    ∴∠EAB=∠BAO=∠DCA.
    ∵∠EAO+∠DCO=180°,
    ∴∠DCA=60°.
    ∵DC=2,
    ∴AD=.
    ∴SΔADC=.
    ∴S四边形ADOE =.
    【点睛】
    考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
    24、(1)证明略
    (2)等腰三角形,理由略
    【解析】
    证明:(1)∵BE=CF,
    ∴BE+EF=CF+EF, 即BF=CE.
    又∵∠A=∠D,∠B=∠C,
    ∴△ABF≌△DCE(AAS),
    ∴AB=DC.
    (2)△OEF为等腰三角形
    理由如下:∵△ABF≌△DCE,
    ∴∠AFB=∠DEC.
    ∴OE=OF.
    ∴△OEF为等腰三角形.
    相关试卷

    四川省北大附中成都为明学校2023-2024学年数学九上期末统考模拟试题含答案: 这是一份四川省北大附中成都为明学校2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了若均为锐角,且,则.等内容,欢迎下载使用。

    北大附中2022-2023学年中考数学模试卷含解析: 这是一份北大附中2022-2023学年中考数学模试卷含解析,共20页。

    四川省成都南开为明校2022年中考联考数学试题含解析: 这是一份四川省成都南开为明校2022年中考联考数学试题含解析,共23页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map