|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届四川省成都市外国语学校九上数学开学综合测试模拟试题【含答案】
    立即下载
    加入资料篮
    2025届四川省成都市外国语学校九上数学开学综合测试模拟试题【含答案】01
    2025届四川省成都市外国语学校九上数学开学综合测试模拟试题【含答案】02
    2025届四川省成都市外国语学校九上数学开学综合测试模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届四川省成都市外国语学校九上数学开学综合测试模拟试题【含答案】

    展开
    这是一份2025届四川省成都市外国语学校九上数学开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图, 中, ,,则的度数为( )

    A.B.C.D.
    2、(4分)已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,则①abc>0,②b2-4ac>0,③2a+b>0,④a+b+c<0,这四个式子中正确的个数有( )
    A.4个B.3个C.2个D.1个
    3、(4分)若线段a,b,c组成直角三角形,则它们的比可以为( )
    A.2∶3∶4B.7∶24∶25C.5∶12∶14D.4∶6∶10
    4、(4分)不等式组的解集是x>4,那么m的取值范围是( )
    A.m≤4B.m<4C.m≥4D.m>4
    5、(4分)某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差如表所示.如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是( )
    A.甲B.乙C.丙D.丁
    6、(4分)矩形一个内角的平分线把矩形的一边分成和,则矩形的周长为( )
    A.和B.C.D.以上都不对
    7、(4分)若关于的不等式组的整数解共5个,则的取值范围是( )
    A.B.C.D.
    8、(4分)将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有( )个菱形.
    A.33B.36C.37D.41
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图在中,,,的平分线交于,交的延长线于,则的值等于_________.
    10、(4分)如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数 的图象上,则矩形ABCD的周长为________.
    11、(4分)如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=_____.
    12、(4分)若,则等于______.
    13、(4分)不等式组的最小整数解是___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.
    (1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;
    (2)如图2,若DA=DE,求证:BF+DF=AF.
    15、(8分)已知,,为的三边长,并且满足条件,试判断的形状.
    16、(8分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.
    (1)求证:四边形ABCD是菱形;
    (2)若∠DAB=60°,且AB=4,求OE的长.
    17、(10分)利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).
    (1)先作出该四边形关于直线成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90后的图形;
    (2)完成上述设计后,整个图案的面积等于_________.
    18、(10分)如图,已知G、H是△ABC的边AC的三等分点,GE∥BH,交AB于点E,HF∥BG交BC于点F,延长EG、FH交于点D,连接AD、DC,设AC和BD交于点O,求证:四边形ABCD是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图所示,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度i=1∶0.5,则山的高度为____________米.
    20、(4分)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,点G是EF的中点,连接CG、BG、BD、DG,下列结论:① BC=DF,②∠DGF=135;③BG⊥DG,④ 若3AD=4AB,则4S△BDG=25S△DGF;正确的是____________(只填番号).
    21、(4分)高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为______.
    22、(4分)已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.
    23、(4分)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
    根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知直线l:y=﹣x+b与x轴,y轴的交点分别为A,B,直线l1:y=x+1与y轴交于点C,直线l与直线ll的交点为E,且点E的横坐标为1.
    (1)求实数b的值和点A的坐标;
    (1)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线l与直线ll于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.
    25、(10分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)
    (1)求△ABC的面积是____;
    (2)求直线AB的表达式;
    (3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;
    (4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.
    26、(12分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.
    (1)求反比例函数的解析式;
    (2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
    ①四个顶点均在格点上,且其中两个顶点分别是点O,点P;
    ②矩形的面积等于k的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.
    【详解】
    解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,
    ∴∠B+19°=x+14°,
    ∴∠B=x-5°,
    ∵AB=AC,
    ∴∠C=∠B=x-5°,
    ∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,
    ∵AD=DE,
    ∴∠DEA=∠DAE=x+9°,
    在△ADE中,由三角形内角和定理可得
    x+ x+9°+ x+9°=180°,
    解得x=54°,即∠ADE=54°,
    ∴∠DAE=63°
    故选:B.
    本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.
    2、A
    【解析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由对称轴判断b的大小,易判断①③;根据x=1时的函数值判断④;根据二次函数图象与x轴有两个交点可判断②,进而得出结论.
    【详解】
    解:由二次函数的图象开口向上可得a>0,
    根据二次函数的图象与y轴交于负半轴知:c<0,
    由对称轴为直线0<x<1可知->0,
    易得b<0,
    ∴abc>0,故①正确;
    ∵-<1,a>0,
    ∴2a + b>0,故③正确;
    ∵二次函数图象与x轴有两个交点,∴△=b2-4ac>0,故②正确;
    ∵观察图象,当x=1时,函数值y=a+b+c<0,故④正确,
    ∴①②③④均正确,
    故选:A.
    本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c然后根据图象判断其值.
    3、B
    【解析】
    要组成直角三角形,三条线段的比值要满足较小的比值的平方和等于较大比值的平方.结合选项分析即可得到答案.
    【详解】
    A. 22+32≠42,故本选项错误;
    B. 72+242=252,故本选项正确;
    C. 52+122≠142,故本选项错误;
    D. 4262≠102,故本选项错误.
    故选B.
    本题考查勾股定理的逆定理,解题的关键是掌握勾股定理的逆定理.
    4、A
    【解析】
    求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可得答案.
    【详解】
    解不等式(x+2)﹣3>0,得:x>4,
    由不等式组的解集为x>4知m≤4,
    故选A.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键
    5、B
    【解析】
    从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.
    【详解】
    解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,
    因此要选择一名成绩高且发挥稳定的学生参赛,选择乙,
    故选B.
    6、A
    【解析】
    利用角平分线得到∠ABE=∠CBE,矩形对边平行得到∠AEB=∠CBE.那么可得到∠ABE=∠AEB,可得到AB=AE.那么根据AE的不同情况得到矩形各边长,进而求得周长.
    【详解】
    ∵矩形ABCD中BE是角平分线.
    ∴∠ABE=∠EBC.
    ∵AD∥BC.
    ∴∠AEB=∠EBC.
    ∴∠AEB=∠ABE.
    ∴AB=AE.
    平分线把矩形的一边分成3cm和5cm.
    当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;
    当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.
    故选A.
    本题主要运用了矩形性质,角平分线的定义和等角对等边知识,正确地进行分情况讨论是解题的关键.
    7、B
    【解析】
    求出不等式组的解集,再根据已知得出关于m的不等式组,即可打得出答案.
    【详解】
    解不等式①得:x解不等式②得:x⩾3,
    所以不等式组的解集是3⩽x∵关于x的不等式 的整数解共有5个,
    ∴7故选B.
    此题考查一元一次不等式组的整数解,解题关键在于掌握运算法则.
    8、C
    【解析】
    设第n个图形有an个菱形(n为正整数),观察图形,根据各图形中菱形个数的变化可得出变化规律“an=4n+1(n为正整数)”,再代入n=9即可求出结论.
    【详解】
    解:设第n个图形有an个菱形(n为正整数).
    观察图形,可知:a1=5=4+1,a2=9=4×2+1,a3=13=4×3+1,a4=17=4×4+1,
    ∴an=4n+1(n为正整数),
    ∴a9=4×9+1=1.
    故选:C.
    本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化找出变化规律“an=4n+1(n为正整数)”是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    根据平行四边形的性质得到∠F=∠DCF,根据角平分线的性质得到BF=BC=8,从而解得答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD=BC=8,CD=AB=6,
    ∴∠F=∠DCF,
    ∵∠C平分线为CF,
    ∴∠FCB=∠DCF,
    ∴∠F=∠FCB,
    ∴BF=BC=8,
    同理:DE=CD=6,
    ∴AF=BF-AB=2,AE=AD-DE=2,
    ∴AE+AF=4;
    本题考查平行四边形的性质和角平分线的性质,解题的关键是掌握平行四边形的性质和角平分线的性质.
    10、1
    【解析】
    分析:根据矩形的性质、结合点A的坐标得到点D的横坐标为2,点B的纵坐标为1,根据反比例函数解析式求出点D的坐标,点B的坐标,根据矩形的周长公式计算即可.
    详解:∵四边形ABCD是矩形,点A的坐标为(2,1),
    ∴点D的横坐标为2,点B的纵坐标为1,
    当x=2时,y==3,
    当y=1时,x=6,
    则AD=3-1=2,AB=6-2=4,
    则矩形ABCD的周长=2×(2+4)=1,
    故答案为1.
    点睛:本题考查的是反比例函数图象上点的坐标特征、矩形的性质,掌握反比例函数图象上点的坐标特征是解题的关键.
    11、40°
    【解析】
    首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.
    【详解】
    解:∵AB=AC,∠BAC=100°,
    ∴∠B=∠C=(180°﹣100°)÷2=40°,
    ∵DE是AB的垂直平分线,
    ∴AE=BE,
    ∴∠BAE=∠B=40°,
    故答案为40°.
    本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.
    12、
    【解析】
    依据比例的基本性质,即可得到5a=7b,进而得出=.
    【详解】
    解:∵,
    ∴5a-5b=2b,
    即5a=7b,
    ∴=,
    故答案为:.
    本题主要考查了分式的值,解决问题的关键是利用比例的基本性质进行化简变形.
    13、-1
    【解析】
    分别解两个不等式,得到不等式组的解集,再从解集中找到最小整数解.
    【详解】
    解不等式得,
    解不等式得
    ∴不等式组的解集为
    ∴不等式组的最小整数解为-1
    故答案为:-1.
    本题考查求不等式组的最小整数解,熟练掌握解不等式,并由“大小小大取中间”确定不等式组的解集是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)AB=2;(1)证明见解析.
    【解析】
    (1)设BM=x,则CM=1x,BC=BA=3x;在Rt△ABM中,E为斜边AM中点,根据直角三角形斜边的中线等于斜边的一半可得AM=1BE=1.由勾股定理可得AM1=MB1+AB1,即可得30=x1+9x1,解得x=1.所以AB=3x=2;(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.证明△ABF≌△ADH,根据全等三角形的性质可得AF=AH,BF=DH.再由Rt△FAH是等腰直角三角形,可得HF=AF.由HF=DH+DF=BF+DF,可得BF+DF=AF.
    【详解】
    解:(1)设BM=x,则CM=1x,BC=3x,
    ∵BA=BC,
    ∴BA=3x.
    在Rt△ABM中,E为斜边AM中点,
    ∴AM=1BE=1.
    由勾股定理可得AM1=MB1+AB1,
    即30=x1+9x1,解得x=1.
    ∴AB=3x=2.
    (1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.
    ∵DF平分∠CDE,
    ∴∠1=∠1.
    ∵DE=DA,DP⊥AF
    ∴∠3=∠3.
    ∵∠1+∠1+∠3+∠3=90°,
    ∴∠1+∠3=35°.
    ∴∠DFP=90°﹣35°=35°.
    ∴AH=AF.
    ∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,
    ∴∠BAF=∠DAH.
    又AB=AD,
    ∴△ABF≌△ADH(SAS).
    ∴AF=AH,BF=DH.
    ∵Rt△FAH是等腰直角三角形,
    ∴HF=AF.
    ∵HF=DH+DF=BF+DF,
    ∴BF+DF=AF.
    本题是四边形的综合题,考查了正方形的性质、勾股定理、全等三角形的判定与性质及等腰直角三角形的性质等知识点,熟练运用相关知识是解决问题的关键.
    15、等腰三角形或直角三角形等腰直角三角形.
    【解析】
    对已知等式运用因式分解变形,得到,即a-b=0或a2+b2=c2,通过分析判断即可解决问题.
    【详解】
    解:,



    则a-b=0或a2+b2=c2,
    当a-b=0时,△ABC为等腰三角形;
    当a2+b2=c2时,△ABC为直角三角形.
    当a-b=0且a2+b2=c2时,△ABC为等腰直角三角形.
    综上所述,△ABC为等腰三角形或直角三角形或等腰直角三角形.
    本题主要考查了因式分解在几何中的应用问题;解题的关键是:灵活变形、准确分解、正确判断.
    16、 (1)证明见解析;(1)1.
    【解析】
    (1)根据平行四边形的判定和菱形的判定证明即可;
    (1)根据菱形的性质和勾股定理解答即可.
    【详解】
    (1)∵AB∥DC,
    ∴∠CAB=∠ACD.
    ∵AC平分∠BAD,
    ∴∠CAB=∠CAD.
    ∴∠CAD=∠ACD,
    ∴DA=DC.
    ∵AB=AD,
    ∴AB=DC.
    ∴四边形ABCD是平行四边形.
    ∵AB=AD,
    ∴四边形 ABCD是菱形;
    (1)∵四边形 ABCD是菱形,∠DAB=60°,
    ∴∠OAB=30,∠AOB=90°.
    ∵AB=4,
    ∴OB=1,AO=OC=1.
    ∵CE∥DB,
    ∴四边形 DBEC是平行四边形.
    ∴CE=DB=4,∠ACE=90°.
    ∴.
    本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
    17、(1)图见解析; (2)1
    【解析】
    (1)根据图形对称的性质先作出关于直线l的对称图形,再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形即可;
    (2)先利用割补法求出原图形的面积,由图形旋转及对称的性质可知经过旋转与轴对称所得图形与原图形全等即可得出结论.
    【详解】
    解:(1)作图如图所示:
    先作出关于直线l的对称图形;再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形.
    (2)∵边长为1的方格纸中一个方格的面积是1,
    ∴原图形的面积为5,
    ∴整个图案的面积=4×5=1.
    故答案为:1.
    点睛:本题考查的是利用旋转及轴对称设计图案,熟知经过旋转与轴对称所得图形与原图形全等是解答此题的关键.
    18、证明见解析.
    【解析】
    分析:根据题意得出EG、FH分别是△ABH和△CBG的中位线,从而得出ED∥BH,FD∥BG,即四边形BHDG是平行四边形,从而得出OB=OD,OG=OH,结合AG=CH得出OA=OC,从而根据对角线互相平分的四边形是平行四边形得出答案.
    详解:证明:∵G、H是AC的三等分点且GE∥BH,HF∥BG,
    ∴AG=GH=HC,EG、FH分别是△ABH和△CBG的中位线, ∴ED∥BH,FD∥BG,
    ∴四边形BHDG是平行四边形, ∴OB=OD,OG=OH,OA=OG+AG=OH+CH=OC,
    ∴四边形ABCD是平行四边形.
    点睛:本题主要考查的是平行四边形的性质与判定,属于中等难度的题型.根据中位线的性质得出四边形BHDG是平行四边形是解决这个问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    本题是把实际问题转化为解直角三角形问题,由题意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠CBD=90°,求CB.设AB=x,则CB=2x,由三角函数得:=tan30°,即=,求出x,从求出CB.即求出山的高度.
    解:已知山坡AC的坡度i=1:0.5,
    ∴设AB=x,则CB=2x,又某人在D处测得山顶C的仰角为30°,即,∠CDB=30°,
    ∴=tan30°,即=,
    解得:x=,
    ∴CB=2x=,
    故答案为.
    20、①③④
    【解析】
    根据矩形的性质得:BC=AD,∠BAD=∠ADC=90°,由角平分线可得△ADF是等腰直角三角形,则BC=DF=AD,故①正确;
    先求出∠BAE=45°,判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AB=BE,∠AEB=45°,从而得到BE=CD;再求出△CEF是等腰直角三角形,根据等腰直角三角形的性质可得CG=EG,再求出∠BEG=∠DCG=135°,然后利用“边角边”证明△BEG≌△DCG,得到∠BGE=∠DGC,由∠BGE<∠AEB,得到∠DGC=∠BGE<45°,∠DGF<135°,故②错误;
    由全等三角形的性质可得∠BGE=∠DGC,即可得到③正确;
    由△BGD是等腰直角三角形得到BD=5a,求得S△BDG,过G作GM⊥CF于M,求得S△DGF,进而得出答案.
    【详解】
    ∵四边形ABCD是矩形,∴BC=AD,∠BAD=∠ADC=90°.
    ∵AF平分∠BAD,∴∠BAE=∠DAF=45°,∴△ADF是等腰直角三角形,∴DF=AD,∴BC=DF,故选项①正确;
    ∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴AB=BE,∠AEB=45°.
    ∵AB=CD,∴BE=CD;
    ∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF是等腰直角三角形.
    ∵点G为EF的中点,∴CG=EG,∠FCG=45°,∴∠BEG=∠DCG=135°.
    在△BEG和△DCG中,∵,∴△BEG≌△DCG(SAS),∴∠BGE=∠DGC.
    ∵∠BGE<∠AEB,∴∠DGC=∠BGE<45°.
    ∵∠CGF=90°,∴∠DGF<135°,故②错误;
    ∵△BEG≌△DCG,∴∠BGE=∠DGC,BG=DG.
    ∵∠EGC=90°,∴∠BGD=90°,∴BG⊥DG,故③正确;
    ∵3AD=4AB,∴,∴设AB=3a,则AD=4a.
    ∵BD=5a,∴BG=DGa,∴S△BDGa1.
    过G作GM⊥CF于M.
    ∵CE=CF=BC﹣BE=BC﹣AB=a,∴GMCFa,∴S△DGF•DF•GM4aa=a1,∴S△BDGS△DGF,∴4S△BDG=15S△DGF,故④正确.
    故答案为①③④.
    本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.
    21、21
    【解析】
    【分析】设建筑物高为hm,依题意得.
    【详解】设建筑物高为hm,依题意得
    解得,h=21
    故答案为21
    【点睛】本题考核知识点:成比例性质.解题关键点:理解同一时刻,物高和影长成比例.
    22、14或16.
    【解析】
    求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
    【详解】
    (1)若4为腰长,6为底边长,
    由于6−4<4<6+4,即符合三角形的两边之和大于第三边.
    所以这个三角形的周长为6+4+4=14.
    (2)若6为腰长,4为底边长,
    由于6−6<4<6+6,即符合三角形的两边之和大于第三边.
    所以这个三角形的周长为6+6+4=16.
    故等腰三角形的周长为:14或16.
    故答案为:14或16.
    此题考查三角形三边关系,等腰三角形的性质,解题关键在于分情况讨论
    23、1.2
    【解析】
    仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.
    【详解】
    ∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,
    ∴该玉米种子发芽的概率为1.2,
    故答案为1.2.
    考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    二、解答题(本大题共3个小题,共30分)
    24、(3)b=2,A(6,0);(3) a的值为5或﹣3
    【解析】
    (3)将点E的横坐标为3代入y=x+3求出点E的坐标,再代入y=﹣x+b中可求出b的值,然后令﹣x+b=0解之即可得出A点坐标;
    (3)由题可知,MN//OB,只需再求出当MN=OB时的a值,即可得出答案.
    【详解】
    (3)∵点E在直线l3上,且点E的横坐标为3,
    ∴点E的坐标为(3,3),
    ∵点E在直线l上,
    ∴,
    解得:b=2,
    ∴直线l的解析式为,
    当y=0时,有,
    解得:x=6,
    ∴点A的坐标为(6,0);
    (3)如图所示,
    当x=a时,,,
    ∴,
    当x=0时,yB=2,
    ∴BO=2.
    ∵BO∥MN,
    ∴当MN=BO=2时,以点B、O、M、N为顶点的四边形为平行四边形,
    此时|3﹣a |=2,
    解得:a=5或a=﹣3.
    ∴当以点B、O、M、N为顶点的四边形为平行四边形,a的值为5或﹣3.
    本题是一次函数综合题.考查了一次函数图象点的坐标特征、待定系数法、平行四边形的判定等知识.用含a的式子表示出MN的长是解题的关键.
    25、 (1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).
    【解析】
    (1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;
    (2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;
    (3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;
    (1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.
    【详解】
    解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),
    ∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,
    ∴S△ABC=AC•BC=×2×1=1.
    故答案为1;
    (2)设直线AB的表达式为y=kx+b.
    ∵A点坐标是(1,3),B点坐标是(5,1),
    ∴,解得,
    ∴直线AB的表达式为y=﹣x+;
    (3)当k>2时,y=kx+2过A(1,3)时,
    3=k+2,解得k=1,
    ∴一次函数y=kx+2与线段AB有公共点,则2<k≤1;
    当k<2时,y=kx+2过B(5,1),
    1=5k+2,解得k=﹣,
    ∴一次函数y=kx+2与线段AB有公共点,则﹣≤k<2.
    综上,满足条件的k的取值范围是2<k≤1或﹣≤k<2;
    (1)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.
    设直线CP的解析式为y=﹣x+n,
    ∵C点坐标是(1,1),
    ∴1=﹣+n,解得n=,
    ∴直线CP的解析式为y=﹣x+,
    ∴P(2,).
    设直线AB:y=﹣x+交y轴于点D,则D(2,).
    将直线AB向上平移﹣=2个单位,得到直线y=﹣x+,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(2,).
    综上所述,所求P点坐标是(2,)或(2,).
    故答案为(2,)或(2,).
    本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.
    26、(1);(2)作图见解析.
    【解析】
    分析:(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;
    (2)根据矩形满足的两个条件画出符合要求的两个矩形即可.
    详解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),
    ∴k=2×2=4,
    ∴反比例函数的解析式为y=;
    (2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.
    点睛:本题考查了作图-应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.
    题号





    总分
    得分
    批阅人




    8
    9
    9
    8
    1
    1
    1.2
    1.3
    种子粒数
    100
    400
    800
    1 000
    2 000
    5 000
    发芽种子粒数
    85
    318
    652
    793
    1 604
    4 005
    发芽频率
    0.850
    0.795
    0.815
    0.793
    0.802
    0.801
    相关试卷

    2025届上海外国语大附属外国语学校数学九上开学检测模拟试题【含答案】: 这是一份2025届上海外国语大附属外国语学校数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年四川省成都市外国语学校数学九上开学质量检测试题【含答案】: 这是一份2024年四川省成都市外国语学校数学九上开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年四川省成都市金牛区数学九上开学综合测试模拟试题【含答案】: 这是一份2024年四川省成都市金牛区数学九上开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map