2024年陕西省西安市莲湖区数学九年级第一学期开学监测模拟试题【含答案】
展开
这是一份2024年陕西省西安市莲湖区数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,△ABC是面积为27cm2的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为( )
A.9cm2B.8cm2C.6cm2D.12 cm2
2、(4分)平面直角坐标系中的四个点:,其中在同一个反比例函数图象上的是( )
A.点和点B.点和点
C.点和点D.点和点
3、(4分)点和都在直线上,则与的关系是
A.B.C.D.
4、(4分)若点P(1-m,-3)在第三象限,则m的取值范围是( )
A.m1
5、(4分)我校开展了主题为“青春·梦想”的艺术作品征集活动、从八年级某六个班中收集到的作品数量(单位:件)统计如图,则这组数据的众数、中位数、平均数依次是( )
A.48,48,48B.48,47.5,47.5
C.48,48,48.5D.48,47.5,48.5
6、(4分)下列说法正确的是( )
A.为了解昆明市中学生的睡眠情况,应该采用普查的方式
B.数据2,1,0,3,4的平均数是3
C.一组数据1,5,3,2,3,4,8的众数是3
D.在连续5次数学周考测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定
7、(4分)某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡.它们的使用寿命如下表所示:
这批灯泡的平均使用寿命是( )
A.1120小时B.1240小时C.1360小时D.1480小时
8、(4分)如图,有一个矩形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF的长为( )
A.5B.6C.7D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)不等式组的所有整数解的积是___________.
10、(4分)分解因式:9x2y﹣6xy+y=_____.
11、(4分)已知直角三角形中,分别以为边作三个正方形,其面积分别为,则__________(填“”,“”或“”)
12、(4分)分解因式:a2-4=________.
13、(4分)一次函数图象过点日与直线平行,则一次函数解析式__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形中,是对角线上一个动点,连结,过作,,
,分别为垂足.
(1)求证:;
(2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长
15、(8分)如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点.
(1)求一次函数和正比例函数的解析式;
(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.
16、(8分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解
在“平行四边形、菱形、矩形、正方形”中是“等邻边四边形”的是 .
(2)概念应用
在Rt△ABC中,∠C=,AB=5,AC=3.点D是AB边的中点,点E是BC边上的一个动点,若四边形ADEC是“等邻边四边形”,则CE= .
17、(10分)如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.
(1)求菱形ABCD的面积;
(2)求的值.
18、(10分)(1)化简:;(2)先化简,再求值:,选一个你喜欢的数求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)要使代数式有意义,则的取值范围是________.
20、(4分)如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y 的图象上,则 k 的值为________.
21、(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.
22、(4分)方程的根是_____.
23、(4分)某种感冒病毒的直径是0.000 000 12米,用科学记数法表示为 米.
二、解答题(本大题共3个小题,共30分)
24、(8分)解一元二次方程:.
25、(10分)如图,DB∥AC,且DB=AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?
26、(12分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,ND=1.
①求MC的长.
②求MN的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先证明△AEH∽△AFG∽△ABC,再根据相似三角形的面积比是相似比的平方,即可得出结果.
【详解】
解:∵是面积为的等边三角形
∴
∵矩形平行于
∴
∴
∵被截成三等分
∴,
∴
∴
∴图中阴影部分的面积
故选:A
本题考查了相似三角形的判定和性质,正确理解题意并能灵活运用相关判定方法和性质是解题的关键.
2、B
【解析】
分别将每个点的横、纵坐标相乘,得数相同的两个点在同一反比例函数图象上.
【详解】
解:∵
∴点和点两个点在同一反比例函数图象上.
故选:B.
本题考查的知识点是反比例函数图象上点的坐标特征,属于基础题目,掌握反比例函数解析式是解此题的关键.
3、D
【解析】
根据一次函数图象上点的坐标特征,将点和分别代入直线方程,分别求得和的值,然后进行比较.
【详解】
根据题意得:,即;
,即;
,
.
故选:.
本题考查了一次函数图象上点的坐标特征,一次函数图象上的点满足该函数的解析式.
4、D
【解析】
根据第三象限内点的横坐标是负数列不等式求解即可.
【详解】
解:∵点P(1−m,−3)在第三象限,
∴1−m<0,
解得m>1.
故选D.
本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
5、A
【解析】
根据众数、中位数的定义和加权平均数公式分别进行解答即可.
【详解】
解:这组数据48出现的次数最多,出现了3次,则这组数据的众数是48;
把这组数据从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;
这组数据的平均数是:(47×2+48×3+50)÷6=48,
故选:A.
本题考查了众数、中位数和平均数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).
6、C
【解析】
根据抽样调查、平均数、众数的定义及方差的意义解答可得.
【详解】
解:A、为了解昆明市中学生的睡眠情况,应该采用抽样调查的方式,此选项错误;
B、数据2,1,0,3,4的平均数是2,此选项错误;
C、一组数据1,5,3,2,3,4,8的众数是3,此选项正确;
D、在连续5次数学周考测试中,两名同学的平均分相同,方差较小的同学数学成绩更稳定,此选项错误;
故选C.
此题考查了抽样调查、平均数、众数和方差的定义.平均数是所有数据的和除以数据的个数.一组数据中出现次数最多的数据叫做众数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
7、B
【解析】
先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算.
【详解】
根据题意得:(800×30+1200×30+1600×40)
=×124000
=1240(h).
则这批灯泡的平均使用寿命是1240h.
故选B.
本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.
8、B
【解析】
根据矩形的性质得到CD=AB=8,根据勾股定理求出CF,根据勾股定理列方程计算即可.
【详解】
∵四边形ABCD是矩形,
∴CD=AB=8,
∴DE=CD﹣CE=5,
由折叠的性质可知,EF=DE=5,AF=CD=BC,
在Rt△ECF中,CF= =4,
由勾股定理得,AF2=AB2+BF2,即(BF+4)2=82+BF2,
解得,BF=6,
故选:B.
本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.
【详解】
由1-2x<3,得:x>-1,
由 ≤2,得:x≤3,
所以不等式组的解集为:-1<x≤3,
它的整数解为1、1、2、3,
所有整数解的积是1.
故答案为1.
此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
10、y(3x﹣1)1.
【解析】
首先提公因式y,再利用完全平方公式进行二次分解.
【详解】
解:原式=y(9x1﹣6x+1)=y(3x﹣1)1,
故答案为:y(3x﹣1)1.
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
11、
【解析】
由勾股定理得出AC2+BC2=AB2,得出S1+S2=S3,可得出结果.
【详解】
解:∵∠ACB=90°,
∴AC2+BC2=AB2,
∴S1+S2=S3,
故答案为:=.
本题考查了勾股定理、正方形面积的计算;熟练掌握勾股定理,由勾股定理得出正方形的面积关系是解决问题的关键.
12、 (a+2)(a-2);
【解析】
有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.
【详解】
解:a2-4=(a+2)(a-2).
故答案为:(a+2)(a-2).
考点:因式分解-运用公式法.
13、
【解析】
设一次函数解析式为y=kx+b,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.
【详解】
解:设一次函数解析式为y=kx+b,
把(0,-1)代入得b=-1,
∵直线y=kx+b与直线y=1-3x平行,
∴k=-3,
∴一次函数解析式为y=-3x-1.
故答案为:y=-3x-1.
本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)①GE2+GF2=AG2,证明见解析;②的长为或.
【解析】
(1)根据正方形的性质得出△DGE和△BGF是等腰直角三角形,可得GE=DG,GF=BG,结合AB=BD即可得出结论;
(2)①连接CG,由SAS证明△ABG≌△CBG,得出AG=CG,证出四边形EGFC是矩形,得出CE=GF,由勾股定理即可得出GE2+GF2=AG2;
②设GE=CF=x,则GF=BF=6−x,由①中结论得出方程求出CF=1或CF=5,再分情况讨论,由勾股定理求出BG即可.
【详解】
解:(1)∵四边形ABCD为正方形,
∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,
∴△ABD是等腰直角三角形,
∴AB=BD,
∵GE⊥CD,GF⊥BC,
∴△DGE和△BGF是等腰直角三角形,
∴GE=DG,GF=BG,
∴GE+GF=(DG+BG)=BD,
∴GE+GF=AB;
(2)①GE2+GF2=AG2,
证明:连接CG,如图所示:
在△ABG和△CBG中,,
∴△ABG≌△CBG(SAS),
∴AG=CG,
∵GE⊥CD,GF⊥BC,∠BCD=90°,
∴四边形EGFC是矩形,
∴CE=GF,
∵GE2+CE2=CG2,
∴GE2+GF2=AG2;
②设GE=CF=x,则GF=BF=6−x,
∵GE2+GF2=AG2,
∴,
解得:x=1或x=5,
当x=1时,则BF=GF=5,
∴BG=,
当x=5时,则BF=GF=1,
∴BG=,
综上,的长为或.
本题是一道四边形综合题,考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,勾股定理及解一元二次方程等知识,通过作辅助线,构造出全等三角形是解题的关键.
15、(1)y=﹣x+4,;(2)S=2x(0<x≤3).
【解析】
(1)把B(3,1)分别代入y=﹣x+b和y=kx即可得到结论;
(2)根据三角形的面积公式即可得到结论.
【详解】
(1)把B(3,1)分别代入y=﹣x+b和y=kx得1=﹣3+b,1=3k,解得:b=4,k,∴y=﹣x+4,yx;
(2)∵点P(x,y)是线段AB上一点,∴S•xP2x(0<x≤3).
本题考查了两直线相交或平行,三角形面积的求法,待定系数法确定函数关系式,正确的理解题意是解题的关键.
16、(1)菱形,正方形;(2)CE=3或
【解析】
(1)根据“等邻边四边形”的定义即可判断;
(2)分①当CE=AC②当CE=DE时,分别进行求解即可.
【详解】
(1)“等邻边四边形”的是菱形,正方形;
(2)∵∠C=,AB=5,AC=3.
∴BC=
∵四边形ADEC是“等邻边四边形”,
∴分两种情况:
①当CE=AC时,CE=3;
②当CE=DE时,如图,过D作DF⊥BC于点F
设CE=DE=x,
∵DF⊥BC,AC⊥BC,D为AB中点,
则DF=1.5,EF=2-x,
由勾股定理得DE2=EF2+DF2,即x2=(2-x)2+1.52,
解得x=,
∴CE=3或
此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.
17、(1)4;(2)
【解析】
(1)首先根据菱形的性质得到AC和BD垂直平分,结合题意可得a2+b2=5,进而得到ab=2,结合图形的面积公式即可求出面积;
(2)根据a2+b2=5,ab=2得到a+b的值,进而求出答案.
【详解】
解:(1)∵四边形ABCD是菱形,
∴BD垂直平分AC,
∵OA=a,OB=b,AB=,
∴a2+b2=5,
∵a,b满足:.
∴a2b2=4,
∴ab=2,
∴△AOB的面积=ab=1,
∴菱形ABCD的面积=4△AOB的面积=4;
(2)∵a2+b2=5,ab=2,
∴(a+b)2=a2+b2+2ab=7,
∴a+b=,
∴=.
本题主要考查了菱形的性质,解题的关键是根据菱形的对角线垂直平分得到a和b的数量关系,此题是一道非常不错的试题.
18、(1);(2)选时,3.
【解析】
(1)分别利用完全平方公式和平方差公式进行化简,再约分即可
(2)首先将括号里面通分,再将分子与分母分解因式进而化简得出答案
【详解】
解:(1)原式
(2)原式
,
∵
∴可选时,原式.(答案不唯一)
此题考查分式的化简求值,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、且
【解析】
分式的分母不等于零时分式有意义,且还需满足被开方数大于等于零的条件,根据要求列式计算即可.
【详解】
∵代数式有意义,
∴,且,
∴且,
故答案为:且.
此题考查分式有意义的条件,二次根式被开方数的取值范围的确定,正确理解题意列出不等式是解题的关键.
20、−3
【解析】
设A(a,b),则ab=,分别过A,C作AE⊥x轴于E,CF⊥x轴于F,根据相似三角形的判定证得△AOE∽△COF,由相似三角形的性质得到OF=,CF=,则k=-OF•CF=-3.
【详解】
设A(a,b),
∴OE=a,AE=b,
∵在反比例函数y=图象上,
∴ab=,
分别过A,C作AE⊥x轴于E,CF⊥x轴于F,
∵矩形AOCB,
∴∠AOE+∠COF=90°,
∴∠OAE=∠COF=90°−∠AOE,
∴△AOE∽△OCF,
∵OC=OA,
∴===,
∴OF=AE=b,CF=OE=a,
∵C在反比例函数y=的图象上,且点C在第四象限,
∴k=−OF⋅CF=−b⋅a=−3ab=−3.
本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.
21、2+
【解析】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,AB=2,半径为2,
∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
∵点A在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+.
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
22、,.
【解析】
方程变形得:x1+1x=0,即x(x+1)=0,
可得x=0或x+1=0,
解得:x1=0,x1=﹣1.
故答案是:x1=0,x1=﹣1.
23、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.0.00000012=.
二、解答题(本大题共3个小题,共30分)
24、,
【解析】
【分析】用公式法求一元二次方程的解.
【详解】
解:,,.
>1.
∴.
∴原方程的解为,
【点睛】本题考核知识点:解一元二次方程.解题关键点:熟记一元二次方程的求根公式.
25、(1)证明见解析(2)添加AB=BC
【解析】
试题分析:(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.
(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.
试题解析:(1)证明:∵E是AC中点,
∴EC=AC.
∵DB=AC,
∴DB∥EC.
又∵DB∥EC,
∴四边形DBCE是平行四边形.
∴BC=DE.
(2)添加AB=BC.
理由:∵DB∥AE,DB=AE
∴四边形DBEA是平行四边形.
∵BC=DE,AB=BC,
∴AB=DE.
∴▭ADBE是矩形.
考点:矩形的判定;平行四边形的判定与性质.
26、 (1)证明见解析;(2)①MC=3;②MN=2.
【解析】
(1)根据折叠可得∠AMN=∠CMN,再根据平行可得∠ANM=∠CMN,可证CM=CN
(2)①根据等高的两个三角形的面积比等于边的比,可求MC的长.
②作NF⊥MC,可得矩形NFCD,根据勾股定理可求CD,则可得NF,MF,再根据勾股定理可求MN的长.
【详解】
解:(1)∵折叠
∴CM=AM,CN=AN,∠AMN=∠CMN
∵ABCD是矩形
∴AD∥BC
∴∠ANM=∠CMN
∴∠ANM=∠AMN
∴CM=CN
(2)①∵AD∥BC
∴△CMN和△CDN是等高的两个三角形
∴S△CMN:S△CDN=3:1=CM:DN且DN=1
∴MC=3
②∵CM=CN
∴CN=3且DN=1
∴根据勾股定理 CD=2
如图作NF⊥MC
∵NF⊥MC,∠D=∠DCB=90°
∴NFCD是矩形
∴NF=CD=2,FC=DN=1
∴MF=2
在Rt△MNF中,MN==2
此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,掌握数形结合思想与方程思想的应用.
题号
一
二
三
四
五
总分
得分
使用寿命x/小时
600≤x≤1000
1000≤x≤1400
1400≤x≤1800
灯泡数/个
30
30
40
相关试卷
这是一份2024年陕西省西安市(师大附中)九年级数学第一学期开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年陕西省商洛市名校数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年陕西省西安市莲湖区九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了下列说法中,正确的是,已知函数y=ax2+bx+c等内容,欢迎下载使用。