陕西省西安市西北工大附中2024年九年级数学第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)直线y=3x-1与y=x+3的交点坐标是 ( )
A.(2,5)B.(1,4)C.(-2,1)D.(-3,0)
2、(4分)四边形是平行四边形,下列结论中正确的是( )
A.当时,它是菱形B.当时,它是矩形
C.当时,它是正方形D.当时,它是正方形
3、(4分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是( )
A.12B.14C.16D.18
4、(4分)在平面直角坐标系中,直线与y轴交于点A,如图所示,依次正方形,正方形,……,正方形,且正方形的一条边在直线m上,一个顶点x轴上,则正方形的面积是( )
A.B.C.D.
5、(4分)下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是( )
A.B.C.D.
6、(4分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数B.中位数C.众数D.方差
7、(4分)一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为( )
A.51B.31C.12D.8
8、(4分)如图,在□ABCD中,AC与BD相交于点O,点E是边BC的中点,AB = 4,则OE的长是 ( )
A.2B.
C.1D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.
10、(4分)如图的直角三角形中未知边的长x=_______.
11、(4分)计算:的结果是________.
12、(4分)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=_____.
13、(4分)函数y=–1的自变量x的取值范围是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,,点、分别在边、上,且,,点在边上,且,联结.
(1)求证:四边形是菱形;
(2)如果,,求四边形的面积.
15、(8分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.
(1)若该方程有一根为2,求a的值及方程的另一根;
(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
16、(8分)已知a,b是直角三角形的两边,且满足,求此三角形第三边长.
17、(10分)已知四边形,,与互补,以点为顶点作一个角,角的两边分别交线段,于点,,且,连接,试探究:线段,,之间的数量关系.
(1)如图(1),当时,,,之间的数量关系为___________.
(2)在图(2)的条件下(即不存在),线段,,之间的数量关系是否仍然成立?若成立,请完成证明;若不成立,请说明理由.
(3)如图(3),在腰长为的等腰直角三角形中,,,均在边上,且,若,求的长.
18、(10分)如图,矩形OBCD位于直角坐标系中,点B(,0),点D(0,m)在y轴正半轴上,点A(0,1),BE⊥AB,交DC的延长线于点E,以AB,BE为边作▱ABEF,连结AE.
(1)当m=时,求证:四边形ABEF是正方形.
(2)记四边形ABEF的面积为S,求S关于m的函数关系式.
(3)若AE的中点G恰好落在矩形OBCD的边上,直接写出此时点F的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:÷=_____.
20、(4分)小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得,接着活动学具成为图2所示正方形,并测得正方形的对角线,则图1中对角线AC的长为_____.
21、(4分)一组数2、a、4、6、8的平均数是5,这组数的中位数是______.
22、(4分)在函数y=中,自变量x的取值范围是
23、(4分)直线y=kx+b与直线y=-3x+4平行,且经过点(1,2),则k=______,b=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知四边形ABCD是矩形,对角线AC和BD相交于点P,若在矩形的上方作△DEA,且使DE∥AC,AE∥BD.
(1)求证:四边形DEAP是菱形;
(2)若AE=CD,求∠DPC的度数.
25、(10分)某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.
26、(12分)如图,港口位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一个固定方向航行,甲船沿西南方向以每小时12海里的速度航行,乙船沿东南方向以每小时16海里的速度航行,它们离开港口5小时后分别位于、两处,求此时之间的距离.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据求函数图象交点的坐标,转化为求两个一次函数构成的方程组解的问题,因此联立两函数的解析式所得方程组,即为两个函数图象的交点坐标.
【详解】
联立两函数的解析式,得
解得,
则直线y=3x-1与y=x+3的交点坐标是,
故选:A.
考查了两条直线交点坐标和二元一次方程组解的关系,二元一次方程组的求解,注意函数的图象和性质与代数关系的转化,数形结合思想的应用.
2、B
【解析】
根据正方形、菱形、矩形的概念逐个判断即可.
【详解】
解:当四边形ABCD为平行四边形时:
当AC=BD时,它应该是矩形,所以A、C错误,B正确.
当时,它是菱形,所以D错误.
故选B.
本题主要考查正方形、菱形、矩形的概念,这是必考点,必须熟练掌握,这也是同学们最容易忘掉的一个判定定理.
3、B
【解析】
延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.
【详解】
延长BN交AC于D,
在△ANB和△AND中,
,
∴△ANB≌△AND,
∴AD=AB=8,BN=ND,
∵M是△ABC的边BC的中点,
∴DC=2MN=6,
∴AC=AD+CD=14,
故选B.
本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
4、B
【解析】
由一次函数,得出点A的坐标为(0,1),求出正方形M1的边长,即可求出正方形M1的面积,同理求出正方形M2的面积,即可推出正方形的面积.
【详解】
一次函数,令x=0,则y=1,
∴点A的坐标为(0,1),
∴OA=1,
∴正方形M1的边长为,
∴正方形M1的面积=,
∴正方形M1的对角线为,
∴正方形M2的边长为,
∴正方形M2的面积=,
同理可得正方形M3的面积=,
则正方形的面积是,
故选B.
本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.
5、C
【解析】
根据中心对称图形的定义和图案特点即可解答.
【详解】
解:A、不是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项错误;
C、是中心对称图形,故本选项正确;
D、不是中心对称图形,故本选项错误.
故选:C.
本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
6、D
【解析】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差==,
添加数字2后的方差==,
故方差发生了变化.
故选D.
7、B
【解析】
设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得
【详解】
解:设白球个数为个,
根据题意得,白球数量袋中球的总数=1-14=1.6,
所以,
解得
故选B
本题主要考查了用评率估计概率.
8、A
【解析】
根据平行四边形的性质得BO=DO,所以OE是△ABC的中位线,根据三角形中位线定理三角形的中位线平行于第三边并且等于第三边的一半.
【详解】
解:在▱ABCD中,AC与BD相交于点O,
∴BO=DO,
∵点E是边BC的中点,
所以OE是△ABC的中位线,
∴OE=AB=1.
故选A.
本题利用平行四边形的性质和三角形的中位线定理求解,需要熟练掌握.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、7.9
【解析】
分析:根据平均数的定义进行求解即可得.
详解:由题意得:
故答案为
点睛:本题考查了算术平均数,熟练掌握算术平均数的定义是解题的关键.
10、
【解析】
根据勾股定理求解即可.
【详解】
x=.
故答案为:.
本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
11、4
【解析】
按照二次根式的乘、除运算法则运算即可求解.
【详解】
解:原式=
故答案为:4.
本题考查二次根式的乘除运算法则,熟练掌握运算公式是解决此类题的关键.
12、1
【解析】
根据根与系数的关系得到x1+x2=1,x1×x2=﹣1,然后利用整体思想进行计算.
【详解】
解:∵x1、x2是方程x2﹣x﹣1=1的两根,
∴x1+x2=1,x1×x2=﹣1,
∴x1+x2+x1x2=1﹣1=1.
故答案为:1.
此题考查根与系数的关系,解题关键在于得到x1+x2=1,x1×x2=﹣1.
13、x≥1
【解析】
试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.
考点:二次根式有意义
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)1.
【解析】
(1)由平行线的性质及等腰三角形的性质得出,进而有,通过等量代换可得出,然后利用一组对边平行且相等即可证明四边形是平行四边形,然后再利用即可证明四边形是菱形;
(2)过点作交于点,在含30°的直角三角形中求出FG的长度,然后利用即可求出面积.
【详解】
(1),
.
,
,,
,
.
,
.
,
,
又,
.
又,
四边形是平行四边形.
又,
四边形是菱形.
(2)过点作交于点.
四边形是菱形,且,
.
,
.
又,
.
在中,,,
.
.
本题主要考查平行线的性质,等腰三角形的判定,菱形的判定及性质,掌握平行线的性质,等腰三角形的性质,含30°的直角三角形的性质,菱形的判定及性质是解题的关键.
15、(3)a=,方程的另一根为;(2)答案见解析.
【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.
【详解】
(3)将x=2代入方程,得,解得:a=.
将a=代入原方程得,解得:x3=,x2=2.
∴a=,方程的另一根为;
(2)①当a=3时,方程为2x=3,解得:x=3.
②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.
当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3;
当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3.
综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.
考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
16、3或
【解析】
分析:先把右边的项移到左边,,根据完全平方公式变形为,根据算术平方根的非负性和偶次方的非负性列方程求出a、b的值,然后分两种情况利用勾股定理求第三边的长.
详解:由=8b-b2-16,
得-8b+b2+16=0,
得+(b-4)2=0.
又∵≥0,且(b-4)2≥0,
∴a-5=0,b-4=0,
∴a=5,b=4,
当a、b为直角边时,
第三边=;
当a为斜边时,
第三边=;
点睛:本题考查了算术平方根的非负性,偶次方的非负性,完全平方公式,勾股定理及分类讨论的数学思想. 分两种情况求解是正确解答本题的关键.
17、(1);(2)成立;证明见解析;(3).
【解析】
(1)将△ABE绕点A逆时针旋转90°,得到△ADG,据此知AE=AG,BE=DG,∠BAE=∠DAG,证明△AFE≌△AFG可得EF=FG,从而得出答案.
(2)将△ABE绕点A逆时针旋转得到△ADH,知∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH,证明△AEF≌△AHF得.
(3)将△AEC绕点A顺时针旋转90°,得到△,连接,据此知,,∠C=∠,,由知,即,从而得到,易证得,根据可得答案.
【详解】
(1)延长到,使,连接,
在正方形中,
,
在和中,
,
,,
,
,
在和中,
,
,
,
.
(2)延长交点,使,连接,
,
,,
,,
,
,
.
(3)将绕点旋转至,连接,
,
,
,,
,
,
设,
,,
,
,
.
本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.
18、 (1)证明见解析;(2)S=m(m>0);(3)满足条件的F坐标为(,2)或(,4).
【解析】
(1)只要证明△ABO≌△CBE,可得AB=BE,即可解决问题;
(2)在Rt△AOB中利用勾股定理求出AB,证明△ABO∽△CBE,利用相似三角形的性质求出BE即可解决问题;
(3)分两种情形I.当点A与D重合时,II.当点G在BC边上时,画出图形分别利用直角三角形和等边三角形求解即可.
【详解】
解:(1)如图1中,
∵m=,B(,0),
∴D(0,),
∴OD=OB=,
∴矩形OBCD是正方形,
∴BO=BC,
∵∠OBC=∠ABE=90°,
∴∠ABO=∠CBE,∵∠BOA=∠BCE=90°,
∴△ABO≌△CBE,
∴AB=BE,
∵四边形ABEF是平行四边形,
∴四边形ABEF是菱形,
∵∠ABE=90°,
∴四边形ABEF是正方形.
(2)如图1中,
在Rt△AOB中,∵OA=1,OB=,
∴AB==2,
∵∠OBC=∠ABE=90°,
∴∠OBA=∠CBE,
∵∠BOA=∠BCE=90°,
∴△ABO∽△CBE,
∴,
∴ ,
∴BE=m,
∴S=AB•BE=m(m>0).
(3)①如图2中,当点A与D重合时,点G在矩形OBCD的边CD上.
∵tan∠ABO=,
∴∠ABO=30°,
在Rt△ABE中,∠BAE=∠ABO=30°,AB=2,
∴AE=,
∵AG=GE,
∴AG=,
∴G(,1),设F(m,n),
则有,,
∴m=,n=2,
∴F(,2).
②如图3中,当点G在BC边上时,作GM⊥AB于M.
∵四边形ABEF是矩形,
∴GB=GA,
∵∠GBO=90°,∠ABO=30°,
∴∠ABG=60°,
∴△ABG是等边三角形,
∴BG=AB=2,
∵FG=BG,
∴F(,4),
综上所述,满足条件的F坐标为(,2)或(,4).
本题考查四边形综合题、矩形的性质、正方形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
直接利用二次根式的除法运算法则得出即可.
【详解】
解:÷==1.
故答案为1.
本题考查二次根式的除法运算,根据二次根式的运算法则得出是解题关键.
20、
【解析】
如图1,2中,连接.在图2中,利用勾股定理求出,在图1中,只要证明是等边三角形即可解决问题.
【详解】
解:如图1,2中,连接.
在图2中,四边形是正方形,
,,
∵,
cm,
在图1中,四边形ABCD是菱形,,
,
是等边三角形,
cm,
故答案为:.
本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21、5
【解析】
由平均数可求解a的值,再根据中位数的定义即可求解.
【详解】
解:由平均数可得,a=5×5-2-4-6-8=5,则该组数由小至大排序为:2、4、5、6、8,则中位数为5,
故答案为:5.
本题考查了平均数和中位数的概念.
22、.
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.
23、-3, 1
【解析】
根据两直线平行,得到k=-3,然后把(1,2)代入y=-3x+b中,可计算出b的值.
【详解】
∵直线y=kx+b与直线y=-3x+4平行,
∴k=-3,
∵直线y=-3x+b过点(1,2),
∴1×(-3)+b=2,
∴b=1.
故答案为:-3;1.
本题主要考查两平行直线的函数解析式的比例系数关系,掌握若两条直线是平行的关系,那么它们的函数解析式的自变量系数相同,是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)∠DPC=60°.
【解析】
试题分析:(1)由题中由已知条件可得其为平行四边形,再加上一组邻边相等即为菱形.
(2)由(1)中的结论即可证明△PDC为等边三角形,从而得出∠DPC=60°.
试题解析:(1)∵DE∥AC,AE∥BD,
∴四边形DEAP为平行四边形,
∵ABCD为矩形,
∴AP=AC,DP=BD,AC=BD,
∴AP=PD,PD=CP,
∴四边形DEAP为菱形;
∵四边形DEAP为菱形,
∴AE=PD,
∵AE=CD,
∴PD=CD,
∵PD=CP(上小题已证),
∴△PDC为等边三角形,
∴∠DPC=60°.
考点:菱形的判定.
25、36平方米
【解析】
连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.
【详解】
连接AC,如图,∵AB⊥BC,∴∠ABC=90°.
∵AB=3米,BC=4米,∴AC=5米.
∵CD=12米,DA=13米,∴CD2+AC2=144+25=169=132=DA2,∴∠ACD=90°,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36(米2).
本题考查了勾股定理和勾股定理的逆定理.
26、100海里
【解析】
根据已知条件,先求出PA、PB的长,再利用勾股定理进行解答.
【详解】
解:如图,由已知得,AP=12×5=60海里,PB=16×5=80海里,
在△APB中
∵∠APB=90°,
由勾股定理得AP2+PB2=AB2,
即602+802=AB2,
AB= =100海里.
答:此时A、B之间的距离相距100海里.
本题考查了勾股定理的应用,解答此题要明确方位角东南,西南是指两坐标轴夹角的平分线.
题号
一
二
三
四
五
总分
得分
批阅人
陕西省西安市西北工大附中九级2024年数学九上开学调研模拟试题【含答案】: 这是一份陕西省西安市西北工大附中九级2024年数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省西安市碑林区西北工大附中2025届数学九上开学达标检测试题【含答案】: 这是一份陕西省西安市碑林区西北工大附中2025届数学九上开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年陕西省西安市碑林区西北工大附中九年级数学第一学期开学经典试题【含答案】: 这是一份2024年陕西省西安市碑林区西北工大附中九年级数学第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。