2025届陕西省西安市西电附中九年级数学第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,点M(﹣2,1)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)关于的方程有两个不相等的实根、,且有,则的值是( )
A.1B.-1C.1或-1D.2
3、(4分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是( )
A.﹣1<x<1或x<﹣2B.x<﹣2或1<x<2
C.﹣2<x<1或x>1D.x<﹣2或x>2
4、(4分)不等式3x<﹣6的解集是( )
A.x>﹣2B.x<﹣2C.x≥﹣2D.x≤﹣2
5、(4分)某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )
A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分
6、(4分)如果一个多边形的内角和等于720°,则这个多边形是( )
A.四边形B.五边形C.六边形D.七边形
7、(4分)如图,等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是( )
①OD=OE;②;③;④△BDE的周长最小值为9,
A.1个B.2个C.3个D.4个
8、(4分)若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为( )
A.4.5cmB.18cmC.9cmD.36cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数的图象如图,根据图中息请写出不等式的解集为__________.
10、(4分)已知是一次函数,则__________.
11、(4分)化简:= .
12、(4分)如图,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,CD=6cm,则AB的长为 cm.
13、(4分)分解因式_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD中,对角线AC与BD相交于点O.
(1)写出与相反的向量______;
(2)填空:++=______;
(3)求作:+(保留作图痕迹,不要求写作法).
15、(8分)如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE=DF, 求证;四边形ABCD是菱形.
16、(8分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.
(1)求∠BAD的度数;
(2)若AB=10,BC=12,求△ABD的周长.
17、(10分)分解因式
(1)20a3-30a2
(2)25(x+y)2-9(x-y)2
18、(10分)某校计划厂家购买A、B两种型号的电脑,已知每台A种型号电脑比每台B种型号电脑多01.万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同;
(1)求A、B两种型号电脑单价各为多少万元?
(2)学校预计用不多于9.2万元的资金购进20台电脑,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线与轴、轴分别交于点和点,点,分别为线段,的中点,点为上一动点,值最小时,点的坐标为______.
20、(4分)如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为__________.
21、(4分)如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.
22、(4分)已知a+b=3,ab=﹣4,则a2b+ab2的值为_____.
23、(4分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=20米,则AB的长为___________米.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,为修通铁路凿通隧道,量出,,,,若每天凿隧道,问几天才能把隧道凿通?
25、(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF 的面积.
26、(12分)已知,直线与双曲线交于点,点.
(1)求反比例函数的表达式;
(2)根据图象直接写出不等式的解集 .
(3)将直线沿轴向下平移后,分别与轴,轴交于点,点,当四边形为平行四边形时,求直线的表达式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
∵点P的横坐标为负,纵坐标为正,
∴该点在第二象限.
故选B.
2、B
【解析】
根据根的判别式及一元二次方程的定义求得a的取值范围,再根据一元二次方程根与系数的关系求得的值,再利用列出以a为未知数的方程,解方程求得a值,由此即可解答.
【详解】
∵关于的方程有两个不相等的实根、,
∴△=(3a+1)2-8a(a+1)=(a-1)2>0,, a≠0,
∴a≠1且a≠0 ,
∵,
∴,
解得a=±1,
∴a=-1.
故选B.
本题主要考查了根与系数的关系、根的判别式,利用根的判别式确定a的取值及利用根与系数的关系列出方程求得a的值是解决问题的关键.
3、C
【解析】
分3>x+2即x<1和3<x+2即x>1两种情况,根据新定义列出不等式求解可得.
【详解】
解:当3>x+2,即x<1时,3(x+2)+x+2>0,
解得:x>-2,
∴-2<x<1;
当3<x+2,即x>1时,3(x+2)-(x+2)>0,
解得:x>-2,
∴x>1,
综上,-2<x<1或x>1,
故选C.
本题主要考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.
4、B
【解析】
根据不等式的性质在不等式的两边同时除以3即可求出x的取值范围.
【详解】
在不等式的两边同时除以3得:x<-1.
故选:B.
本题考查了解简单不等式的能力,解不等式依据的是不等式的基本性质:
(1)不等式的两边同时加上(或减去)同一个数(或整式),不等号的方向不变;
(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;
(3)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
5、C
【解析】
分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6、C
【解析】
试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是1.故选C.
考点:多边形内角与外角.
7、B
【解析】
连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用S△BOD=S△COE得到四边形ODBE的面积=S△ABC=,则可对③进行判断;作OH⊥DE,如图,则DH=EH,计算出S△ODE=OE2,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=6+DE=OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.
【详解】
解:连接OB、OC,如图,
∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,
∵点O是等边△ABC的内心,
∴OB=OC,OB、OC分别平分∠ABC和∠ACB,
∴∠ABO=∠OBC=∠OCB=30°,
∴∠BOC=120°,即∠BOE+∠COE=120°,
而∠DOE=120°,即∠BOE+∠BOD=120°,
∴∠BOD=∠COE,
在△BOD和△COE中,,
∴△BOD≌△COE(ASA),
∴BD=CE,OD=OE,①正确;
∴S△BOD=S△COE,
∴四边形ODBE的面积=S△OBC=S△ABC=××62=,③错误
作OH⊥DE,如图,则DH=EH,
∵∠DOE=120°,
∴∠ODE=∠OEH=30°,
∴OH=OE,HE=OH=OE,
∴DE=OE,
∴S△ODE=•OE•OE=OE2,
即S△ODE随OE的变化而变化,
而四边形ODBE的面积为定值,
∴S△ODE≠S△BDE;②错误;
∵BD=CE,
∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=6+DE=6+OE,
当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,
∴△BDE周长的最小值=6+3=9,④正确.
故选B.
本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质以及三角形面积的计算等知识;熟练掌握旋转的性质和等边三角形的性质,证明三角形全等是解题的关键.
8、B
【解析】
试题分析:根据三角形的中位线定理即可得到结果.
由题意得,原三角形的周长为,
故选B.
考点:本题考查的是三角形的中位线
点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≤1
【解析】
观察函数图形得到当x≤1时,一次函数y=ax+b的函数值小于2,即ax+b≤2
【详解】
解:根据题意得当x≤1时,ax+b≤2,
即不等式ax+b≤2的解集为:x≤1.
故答案为:x≤1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
10、
【解析】
根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.
【详解】
解;由y=(m-1)xm2−8+m+1是一次函数,得
,
解得m=-1,m=1(不符合题意的要舍去).
故答案为:-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
11、2
【解析】
根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
【详解】
∵22=4,∴=2.
本题考查求算术平方根,熟记定义是关键.
12、1.
【解析】
试题分析:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴线段CD是斜边AB上的中线;
又∵CD=6cm,
∴AB=2CD=1cm.
故答案是:1.
考点:直角三角形斜边上的中线.
13、
【解析】
提取公因数4,再根据平方差公式求解即可.
【详解】
故答案为:
本题考查了因式分解的问题,掌握平方差公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) ,;(2);(3)见解析.
【解析】
(1)观察图形直接得到结果;
(2)由+=,+=即可得到答案;
(3)根据平行四边形法则即可求解.
【详解】
解:(1)与相反的向量有,.
(2)∵+=,+=,
∴++=.
(3)如图,作平行四边形OBEC,连接AE,即为所求.
故答案为(1) ,;(2);(3)见解析.
本题考查了平面向量,平面向量知识在初中数学教材中只有沪教版等极少数版本中出现.
15、见解析
【解析】
平行四边形的对角相等,得 ∠B=∠D, 结合AE⊥BC,AF⊥DC和BE=DF,由角边角定理证明△ABE全等△ADF,再由全等三角形对应边相等得DA=AB,最后根据邻边相等的平行四边形是菱形判定 四边形ABCD是菱形 .
【详解】
∵四边形ABCD是平行四边形,
∴∠B=∠D,
∵AE⊥BC,AF⊥DC
∴∠AEB=∠AFD=90°
又∵BE=DF,
∴△ABE≌△ADF(AAS)
∴DA=AB,
∴平行四边形ABCD是菱形
此题主要考查菱形的判定,解题的关键是熟知全等三角形的判定与性质及菱形的判定定理.
16、(1)20°;(2)22.
【解析】
试题分析:(1)根据三角形内角和定理求出∠C,根据线段垂直平分线的性质得到DA=DC,求出∠DAC,计算即可;
(2)根据DA=DC,三角形的周长公式计算.
解:(1)∵∠BAC=60°,∠B=80°,
∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,
∵DE垂直平分AC,∴DA=DC.
∴∠DAC=∠C=40°,
∴∠BAD=60°-40°=20°.
(2)∵DE垂直平分AC,
∴AD=CD,
∴AB+AD+BD=AB+CD+BD=AB+BC=10+12=22,
∴△ABD的周长为22.
17、(1)10a2(2a﹣3)(2)4(4x+y)(x+4y)
【解析】
分析:(1)利用提公因式法,找到并提取公因式10a2即可;
(2)利用平方差公式进行因式分解,然后整理化简即可.
详解:(1)解:20a3﹣30a2=10a2(2a﹣3)
(2)解:25(x+y)2﹣9(x﹣y)2
=[5(x+y)+3(x﹣y)][5(x+y)﹣3(x﹣y)]
=(8x+2y)(2x+8y);
=4(4x+y)(x+4y) .
点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
18、(1)A、B两种型号电脑单价分别为0.5万元和0.4万元;(2)有三种方案:购买A种型号电脑10台,B种型号电脑10台;购买A种型号电脑11台,B种型号电脑9台;购买A种型号电脑12台,B种型号电脑8台.
【解析】
(1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x+0.1)万元,根据题意可列出分式方程进行求解;
(2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,根据题意可列出不等式组即可求解.
【详解】
(1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x-0.1)万元,根据题意得,
解得x=0.5,
经检验,x=0.5是原方程的解,x-0.1=0.4,
故A、B两种型号电脑单价分别为0.5万元和0.4万元.
(2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,
根据题意得,解得y≤12,
又A种型号电脑至少要购进10台,
∴10≤y≤12,
故有三种方案:
购买A种型号电脑10台,B种型号电脑10台;
购买A种型号电脑11台,B种型号电脑9台;
购买A种型号电脑12台,B种型号电脑8台;
此题主要考查分式方程、不等式的应用,解题的关键是根据题意找到等量关系、不等式关系进行列式求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (-,0)
【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
【详解】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4);
令y=x+4中y=0,则x+4=0,解得:x=-6,
∴点A的坐标为(-6,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(-3,1),点D(0,1).
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-1).
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(-3,1),D′(0,-1),
∴有,解得:,
∴直线CD′的解析式为y=-x-1.
令y=-x-1中y=0,则0=-x-1,解得:x=-,
∴点P的坐标为(-,0).
故答案为:(-,0).
本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.
20、
【解析】
如图,延长FD到G,使DG=BE;
连接CG、EF;
∵四边形ABCD为正方形,
在△BCE与△DCG中,
,∴△BCE≌△DCG(SAS),
∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,
在△GCF与△ECF中,
,∴△GCF≌△ECF(SAS),∴GF=EF,
∵CE=3,CB=6,∴BE=,∴AE=3,
设AF=x,则DF=6−x,GF=3+(6−x)=9−x,
∴EF= ,∴(9−x)²=9+x²,∴x=4,即AF=4,
∴GF=5,∴DF=2,
∴CF= = ,
故答案为:.
点睛:本题考查了全等三角形的判定与性质,勾股定理的知识点,构建三角形,利用方程思想是解答本题的关键.
21、1
【解析】
试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.
解:∵四边形ABCD是平行四边形,AC=12,
∴OA=AC=6,BD=2OB,
∵AB⊥AC,AB=8,
∴OB===10,
∴BD=2OB=1.
故答案为:1.
22、﹣1
【解析】
直接提取公因式ab,进而将已知代入求出即可.
【详解】
∵a+b=3,ab=-3,
∴a2b+ab2=ab(a+b)=4×(-3)=-1.
故答案为-1
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
23、40
【解析】
【分析】推出DE是三角形ABC的中位线,即可求AB.
【详解】因为,D、E是AC、BC的中点,
所以,DE是三角形ABC的中位线,
所以,AB=2DE=40米
故答案为:40
【点睛】本题考核知识点:三角形中位线.解题关键点:理解三角形中位线的性质.
二、解答题(本大题共3个小题,共30分)
24、10天才能把隧道凿通
【解析】
由题意可得∠C为90°,在直角△ABC中,已知AB,BC根据勾股定理即可求AC,即可得出需要的天数.
【详解】
解:∵,,
∴.
∵在中,,,
∴.
∴需要天数为(天).
答:10天才能把隧道凿通.
故答案为:10天才能把隧道凿通.
本题考查勾股定理在实际生活中的应用,解题的关键是正确的计算AC的长度.
25、(1)证明详见解析;(2)证明详见解析;(3)1.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
26、(1);(2)或;(3),
【解析】
(1)将点A代入直线解析式即可得出其坐标,再代入反比例函数解析式,即可得解;
(2)首先联立两个函数,解得即可得出点B坐标,直接观察图像,即可得出解集;
(3)首先过点作轴,过点作轴,交于点,根据平行线的性质,得出,得出,进而得出直线CD解析式.
【详解】
解:(1)根据题意,可得点
将其代入反比例函数解析式,即得
(2)根据题意,得
解得
∴点B(4,-2)
∴直接观察图像,可得的解集为
或
(3)过点作轴,过点作轴,交于点
根据题意,可得
∴∠EAB=∠NOB=∠OCD,∠AEB=∠COD=90°,AB=CD
∴∠ABE=∠CDO
∴(ASA)
∴
则可得出直线CD为
此题主要考查一次函数、反比例函数和平行四边形的综合应用,熟练运用,即可解题.
题号
一
二
三
四
五
总分
得分
批阅人
2024年陕西省西安市莲湖区数学九年级第一学期开学监测模拟试题【含答案】: 这是一份2024年陕西省西安市莲湖区数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年陕西省西安市(师大附中)九年级数学第一学期开学联考模拟试题【含答案】: 这是一份2024年陕西省西安市(师大附中)九年级数学第一学期开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年陕西省西安市西工大附中数学九年级第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。