2024年山东省青岛市市南区统考九年级数学第一学期开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若a为有理数,且满足|a|+a=0,则( )
A.a>0B.a≥0C.a<0D.a≤0
2、(4分)某体育馆准备重新铺设地面,已有一部分正三角形的地砖,现要购买另一种不同形状的正多边形地砖与正三角形在同一顶点处作平面镶嵌(正多边形的边长相等),则该体育馆不应该购买的地砖形状是( )
A.正方形B.正六边形C.正八边形D.正十二边形
3、(4分)分式方程的解为( )
A.B.C.D.
4、(4分)若代数式有意义,则实数x的取值范围是( )
A.x≥1B.x≥2C.x>1D.x>2
5、(4分)如图所示的四边形,与选项中的四边形一定相似的是( )
A.B.
C.D.
6、(4分)如图,已知的顶点A、C分别在直线和上,O是坐标原点,则对角线OB长的最小值为( )
A.4B.5C.6D.7
7、(4分)已知点,,,在直线上,且,下列选项正确的是
A.B.C.D.无法确定
8、(4分)如图,在正方形中,为的中点,连结并延长,交边的延长线于点,对角线交于点,已知,则线段的长是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)我们知道,正整数的和1+3+5+…+(2n﹣1)=n2,若把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A8=(2,3),则A2018=_____
10、(4分)对于任意非零实数a,b,定义“☆”运算为:a☆b=,若(x+1)☆x+(x+2)☆(x+1)+(x+3)☆(x+2)+…+(x+2018)☆(x+2017)=,则x=_____.
11、(4分)关于x的分式方程的解为非正数,则k的取值范围是____.
12、(4分)如图,在正方形外取一点,连接、、.过点作的垂线交于点,连接.若,,下列结论:①;②;③点到直线的距离为;④,其中正确的结论有_____________(填序号)
13、(4分)在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分) (1)解不等式组: (2)解方程:.
15、(8分)如图,点为平面直角坐标系的原点,点在轴的正半轴上,正方形的边长是3,点在上,且.将绕着点逆时针旋转得到.
(1)求证:;
(2)在轴上找一点,使得的值最小,求出点的坐标.
16、(8分)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.
(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.
17、(10分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
18、(10分)如图,在边长为1个单位长度的小正方形组成的网格中,的顶点均在格点上,点A的坐标为,点B的坐标为,点C的坐标为.
(1)以点C为旋转中心,将旋转后得到,请画出;
(2)平移,使点A的对应点的坐标为,请画出;
(3)若将绕点P旋转可得到,则点P的坐标为___________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将矩形ABCD折叠,使得对角线的两个端点A.C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为______.
20、(4分)反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________.
21、(4分)请你写出一个有一根为0的一元二次方程:______.
22、(4分)二次根式的值是________.
23、(4分)若二次根式在实数范围内有意义,则实数x的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,等腰直角中,,点在上,将绕顶点沿顺时针方向旋转90°后得到.
(1)求的度数;
(2)当,时,求的大小;
(3)当点在线段上运动时(不与,重合),求证:.
25、(10分)如图,已知AD=BC,AC=BD.
(1)求证:△ADB≌△BCA;
(2)OA与OB相等吗?若相等,请说明理由.
26、(12分)如图,矩形纸片中,已知,折叠纸片使边落在对角线上,点落在点处,折痕为,且,求线段的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题解析:
即为负数或1.
故选D.
2、C
【解析】
根据密铺的条件得,两多边形内角和必须凑出,进而判断即可.
【详解】
解:、正方形的每个内角是,,能密铺;
、正六边形每个内角是,,能密铺;
、正八边形每个内角是,与无论怎样也不能组成的角,不能密铺;
、正十二边形每个内角是,,能密铺.
故选:C.
本题考查两种正多边形的镶嵌应符合多个内角度数和等于.
3、C
【解析】
先解分式方程,最后检验即可得到答案.
【详解】
解:
3(x-2)=x
2x=6
x=3
由3-2≠0,故x=3是方程的解,
即答案为C.
本题考查了解分式方程,其中解方程是关键,检验是易错点.
4、B
【解析】
根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x的不等式组,解不等式组即可得.
【详解】
由题意得
,
解得:x≥2,
故选B.
本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.
5、D
【解析】
根据勾股定理求出四边形ABCD的四条边之比,根据相似多边形的判定方法判断即可.
【详解】
作AE⊥BC于E,
则四边形AECD为矩形,
∴EC=AD=1,AE=CD=3,
∴BE=4,
由勾股定理得,AB==5,
∴四边形ABCD的四条边之比为1:3:5:5,
D选项中,四条边之比为1:3:5:5,且对应角相等,
故选:D.
此题考查相似多边形的判定定理,两个多边形的对应角相等,对应边成比例,则这两个多边形相似,此题求出多边形的剩余边长是解题的关键,利用矩形的性质定理,勾股定理求出边长.
6、B
【解析】
当B在x轴上时,对角线OB长度最小,由题意得出∠ADO=∠CED=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.
【详解】
当B在x轴上时,对角线OB长度最小,如图所示:
直线x=1与x轴交于点D,直线x=4与x轴交于点E,
根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,
四边形ABCD是平行四边形,
∴OA∥BC,OA=BC,
∴∠AOD=∠CBE,
在△AOD和△CBE中,
,
∴△AOD≌△CBE(AAS),
∴OD=BE=1,
∴OB=OE+BE=5,
故答案为:5.
本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
7、B
【解析】
先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可作出判断.
【详解】
解:直线中,
随的增大而增大,
,
.
故选:.
本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.
8、D
【解析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.
【详解】
解:∵四边形ABCD为正方形,
∴AB=CD,AB∥CD,
∴∠ABF=∠GDF,∠BAF=∠DGF,
∴△ABF∽△GDF,
∴,
∴AF=2GF=4,
∴AG=6,
∵CG∥AB,AB=2CG,
∴CG为△EAB的中位线,
∴AE=2AG=12,
故选D.
本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(32,48)
【解析】
先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.
【详解】
解:2018是第1009个数,
设2018在第n组,则1+3+5+7+(2n﹣1)=×2n×n=n2,
当n=31时,n2=961,
当n=32时,n2=1024,
故第1009个数在第32组,
第32组第一个数是961×2+2=1924,
则2018是第+1=48个数,
故A2018=(32,48).
故答案为:(32,48).
此题考查规律型:数字的变化类,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.
10、﹣1
【解析】
已知等式左边利用题中的新定义化简,再利用拆项法变形,整理后即可求出解.
【详解】
解:已知等式利用题中的新定义化简得:
+…+=,
整理得:()=,
合并得:()=,即=0,
去分母得:x+2018+x=0,
解得:x=﹣1,
经检验x=﹣1是分式方程的解,
则x=﹣1.
故答案为:﹣1.
本题考查了分式的混合运算,属于新定义题型,将所求的式子变形之后利用进行拆项是解题的关键.
11、k≥1且k≠3.
【解析】
分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.
【详解】
去分母得:x+k+2x=x+1,
解得:x=,
由分式方程的解为非正数,得到⩽0,且≠−1,
解得:k≥1且k≠3,
故答案为k≥1且k≠3.
本题考查的是分式方程,熟练掌握分式方程是解题的关键.
12、①②④
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
③过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可。
【详解】
解:
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
∴△APD≌△AEB(SAS);
故此选项成立;
②∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
③过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又
∴点B到直线AE的距离为
故此选项不正确;
④如图,连接BD,
在Rt△AEP中,
∵AE=AP=1,
又
∵△APD≌△AEB,
= S正方形ABCD
故此选项正确.
∴正确的有①②④,
故答案为:①②④
本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.
13、
【解析】
运算“※”的意思是两数的倒数之和.由于是在正数范围内,所以-2可看作※后面的x的系数,根据新定义列出式子计算即可.
【详解】
∵,
∴,
去分母得:,
解得:
经检验是原方程的解.
故答案为.
本题除了定义运算外,还考查简单的分式方程的解法.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2)无解.
【解析】
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)由①得:,
由②得:,
则不等式组的解集为;
(2)去分母得:,
解得:,
经检验是增根,分式方程无解.
此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
15、(1)见解析;(2)点坐标为
【解析】
(1)根据直角坐标系的特点证明=90°即可;
(2)作点关于轴对称点,连接交轴于点,即为所求,再根据待定系数法确定函数关系式求出直线EF的解析式,再求出P点.
【详解】
(1)∵是由旋转而来,
∴.
又0,
∴,
即.
(2)如图所示,作点关于轴对称点,连接交轴于点.
∵点和点关于轴成轴对称,
∴.
∴.
且,,三点在一条直线上的时候最小
即取得最小值.
∵,,
∴,,
设直线的表达式为.
,两点坐标代入得,
解得
将∴.
∵点为直线与轴的交点.
∴令,即
得
故点坐标为
此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.
16、(1)证明见解析;(2)BM=ME=;(3)证明见解析.
【解析】
(1)如图1,延长AB交CF于点D,证明BM为△ADF的中位线即可.
(2)如图2,作辅助线,推出BM、ME是两条中位线.
(3)如图3,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME.
【详解】
(1)如图1,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD.
∴点B为线段AD的中点.
又∵点M为线段AF的中点,
∴BM为△ADF的中位线.
∴BM∥CF.
(2)如图2,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,
∴AB=BC=BD=a,AC=AD=a,
∴点B为AD中点,又点M为AF中点.
∴BM=DF.
分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=GE=2a,CG=CF=a.
∴点E为FG中点,又点M为AF中点.
∴ME=AG.
∵CG=CF=a,CA=CD=a,∴AG=DF=a.
∴BM=ME=.
(3)如图3,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD,AC=CD.
∴点B为AD中点.
又点M为AF中点,∴BM=DF.
延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=EG,CF=CG.
∴点E为FG中点.
又点M为AF中点,∴ME=AG.
在△ACG与△DCF中,∵,
∴△ACG≌△DCF(SAS).
∴DF=AG,∴BM=ME.
17、(1)见解析;
(2)见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.
【详解】
(1)证明:∵AE∥BC,DE∥AB ,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
18、(1)见解析;(2)见解析;(3)(-1,0).
【解析】
(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1即可;
(2)根据点A和A2的坐标特征确定平移的方向和距离,利用次平移规律写出点B2、C2的坐标,然后描点即可;、
(3)连接A1A2、C1C2、B1B2,它们都经过点(-1,0),从而得到旋转中心点P.
【详解】
解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作.
(3)△A1B1C1绕点P旋转可得到△A2B2C2,则点P点坐标为(-1,0).
故答案为:(1)见解析;(2)见解析;(3)(-1,0).
本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或2
【解析】
分类讨论:当点E在线段AB上,连结CE,根据折叠的性质得到AE=CE=3,然后在Rt△BCE中,利用勾股定理计算BC;当点E在线段AB的延长线上,连结CE,根据折叠的性质得AE=CE=5,在Rt△BCE中,根据勾股定理计算BC.
【详解】
当点E在线段AB上,如图1,连结CE,
∵AB=4,BE=1,
∴AE=3,
∵将矩形ABCD折叠,使得对角线的两个端点A. C重合,
∴AE=CE=3,
在Rt△BCE中,BC=;
当点E在线段AB的延长线上,如图2,连结CE,
∵AB=4,BE=1,
∴AE=5,
∵将矩形ABCD折叠,使得对角线的两个端点A. C重合,
∴AE=CE=5,
在Rt△BCE中,BC=,
∴BC的长为或.
本题考查折叠问题,分情况解答是解题关键.
20、没有实数根
【解析】
分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出1xy>11,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.
详解:∵反比例函数y=的图象位于一、三象限,
∴a+4>0,
∴a>-4,
∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于11,
∴1xy>11,
即a+4>6,a>1
∴a>1.
∴△=(-1)1-4(a-1)×=1-a<0,
∴关于x的方程(a-1)x1-x+=0没有实数根.
故答案为:没有实数根.
点睛:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.
21、
【解析】
根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.
【详解】
可以是,=0等.
故答案为:
本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.
22、1
【解析】
根据二次根式的性质进行化简即可得解.
【详解】
=|-1|=1.
故答案为:-1.
此题主要考查了二次根式的化简,注意:.
23、x<1
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
解:∵二次根式在实数范围内有意义,
∴1﹣x>0,
解得:x<1.
故答案为:x<1.
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(1);(3)见解析.
【解析】
(1)由于∠PCB=∠BCQ=45°,故有∠PCQ=90°;
(1)利用勾股定理得出AC的长,再利用旋转的性质得出AP=CQ,求得PC的长度,进而利用勾股定理得出PQ的长;
(3)先证明△PBQ也是等腰直角三角形,从而得到PQ1=1PB1=PA1+PC1.
【详解】
(1)∵△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ,
∴,
∴,
∴.
(1)当时,有,,
,
∴.
(3)由(1)可得,,,
,
∴是等腰直角三角形,是直角三角形.
∴,
∵,
∴,
故有.
考查了旋转的性质以及勾股定理和等腰直角三角形的性质等知识,得出旋转前后对应线段之间关系是解题关键.
25、(1)详见解析;(2)OA=OB,理由详见解析.
【解析】
试题分析:(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边即可得出OA=OB.
试题解析:(1)证明:∵在△ADB和△BCA中,AD=BC,AB=BA,BD=AC,
∴△ADB≌△BCA(SSS);
(2)解:OA=OB,
理由是:∵△ADB≌△BCA,
∴∠ABD=∠BAC,
∴OA=OB.
考点:全等三角形的判定与性质;等腰三角形的判定
26、4
【解析】
根据矩形的性质得到BC=AD=8,∠B=90°,再根据折叠的性质得BE=EF=3,∠AFE=∠B=90°,则可计算出CE=5,然后在Rt△CEF中利用勾股定理计算FC.
【详解】
解:∵四边形是矩形,
.
,
,
;
在中,
.
本题考查了折叠的性质:叠前后图形的形状和大小不变,对应边和对应角相等.也考查了矩形的性质以及勾股定理.
题号
一
二
三
四
五
总分
得分
2024年山东省青岛市市南区数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024年山东省青岛市市南区数学九年级第一学期开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省青岛市南区数学九年级第一学期开学预测试题【含答案】: 这是一份2024年山东省青岛市南区数学九年级第一学期开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年山东省青岛市南区数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年山东省青岛市南区数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了的值等于等内容,欢迎下载使用。