2024-2025学年山东省青岛市第九中学九上数学开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,则等于( )
A.B.C.2D.3
2、(4分)某企业今年一月工业产值达20亿元,前三个月总产值达90亿元,求第二、三月份工业产值的月平均增长率.设月平均增长率为,则由题意可得方程( )
A.B.
C.D.
3、(4分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数B.中位数C.众数D.方差
4、(4分)在中,若,则( )
A.B.C.D.
5、(4分)如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是( )
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→矩形→平行四边形→正方形→平行四边形
C.平行四边形→菱形→平行四边形→矩形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形
6、(4分)观察图中的函数图象,则关于的不等式的解集为( )
A.B.C.D.
7、(4分)已知二次函数的与的部分对应值如下表:
下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于1.其中正确的结论有( )
A.1个B.2个C.3个D.1个
8、(4分)矩形一个内角的平分线把矩形的一边分成和,则矩形的周长为( )
A.和B.C.D.以上都不对
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.
10、(4分)函数y=中,自变量x的取值范围是_____.
11、(4分)已知一元二次方程的两个解恰好分别是等腰的底边长和腰长,则的周长为__________.
12、(4分)若代数式在实数范围内有意义,则x的取值范围是_____.
13、(4分)若二次根式有意义,则x的取值范围是 ▲ .
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:,其中的值从不等式组的整数解中选取.
15、(8分)随着“一带一路”的不断建设与深化,我国不少知名企业都积极拓展海外市场,参与投资经营.某著名手机公司在某国经销某种型号的手机,受该国政府经济政策与国民购买力双重影响,手机价格不断下降.分公司在该国某城市的一家手机销售门店,今年5月份的手机售价比去年同期每台降价1000元,若卖出同样多的手机,去年销售额可达10万元,今年销售额只有8万元.
(1)今年5月份每台手机售价多少元?
(2)为增加收入,分公司决定拓展产品线,增加经销某种新型笔记本电脑.已知手机每台成本为3500元,笔记本电脑每台成本为3000元,分公司预计用不少于4.8万元的成本资金少量试生产这两种产品共15台,但因资金所限不能超过5万元,共有几种生产方案?
(3)如果笔记本电脑每台售价3800元,现为打开笔记本电脑的销路,公司决定每售出1台笔记本电脑,就返还顾客现金a元,要使(2)中各方案获利最大,a的值应为多少?最大利润多少?
16、(8分)如图,在平面直角坐标系中,一次函数y=kx+ b的图象分别与x轴和y轴交于点A、B(0,-2),与正比例函数y=x的图象交于点C(m,2).
(1)求m的值和一次函数的解析式;
(2)求△AOC的面积;
(3)直接写出使函数y =kx +b的值大于函数y=x的值的自变量x的取值范围.
17、(10分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
18、(10分)如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积(结果保留π)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)观察下面的变形规律:
=-1,=-,=-,=-,…
解答下面的问题:
(1) 若为正整数,请你猜想=________;
(2) 计算:
20、(4分)如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:
(Ⅰ)该地区出租车的起步价是_____元;
(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式_____.
21、(4分)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
22、(4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.
23、(4分)将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________
二、解答题(本大题共3个小题,共30分)
24、(8分)解一元二次方程
(1)2x+x-3=0 (2)
25、(10分)我市从 2018 年 1 月 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多.某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.
(1)求 A、B 两种型号电动自行车的进货单价;
(2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y 与 m 之间的函数关系式;
(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.
26、(12分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点;
(1)在第一个图中,以格点为端点,画一个三角形,使三边长分别为2、、,则这个三角形的面积是_________;
(2)在第二个图中,以格点为顶点,画一个正方形,使它的面积为10。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由题干可得y=2x,代入计算即可求解.
【详解】
∵,
∴y=2x,
∴,
故选A.
本题考查了比例的基本性质:两内项之积等于两外项之积.即若,则ad=bc,比较简单.
2、C
【解析】
设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达1亿元,可列方程求解.
【详解】
设月平均增长率的百分数为x,
20+20(1+x)+20(1+x)2=1.
故选:C.
此题考查一元二次方程的应用,解题关键看到是一季度的和做为等量关系列出方程.
3、D
【解析】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差==,
添加数字2后的方差==,
故方差发生了变化.
故选D.
4、A
【解析】
根据平行四边形的性质可得出,,因此,,即可得出答案.
【详解】
解:根据题意可画出示意图如下:
∵四边形ABCD是平行四边形,
∴,
∴,
∵,
∴,
∴.
故选:A.
本题考查的知识点是平行四边形的性质,属于基础题目,易于理解掌握.
5、C
【解析】
先判断出点E在移动过程中,四边形AECF始终是平行四边形,当∠AFC=80°时,四边形AECF是菱形,当∠AFC=90°时,四边形AECF是矩形,即可求解.
【详解】
解:∵点O是平行四边形ABCD的对角线得交点,
∴OA=OC,AD∥BC,
∴∠ACF=∠CAD,∠ADB=∠DBC=20°
∵∠COF=∠AOE,OA=OC,∠DAC=∠ACF
∴△AOE≌△COF(ASA),
∴AE=CF,
∵AE∥CF,
∴四边形AECF是平行四边形,
∵∠ADB=∠DBC=20°,∠ACB=50°,
∴∠AFC>20°
当∠AFC=80°时,∠FAC=180°-80°-50°=50°
∴∠FAC=∠ACB=50°
∴AF=FC
∴平行四边形AECF是菱形
当∠AFC=90°时,平行四边形AECF是矩形
∴综上述,当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是:平行四边形→菱形→平行四边形→矩形→平行四边形.
故选:C.
本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力,题目比较好,难度适中.
6、D
【解析】
根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax<bx+c,即可得到答案.
【详解】
解:由图象可知,两图象的交点坐标是(1,2),
当x>1时,ax>bx+c,
∴关于x的不等式ax-bx>c的解集为x>1.
故选:D.
本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.
7、B
【解析】
解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=时,取得最大值,可知抛物线的开口向下,故①正确;
其图象的对称轴是直线x=,故②错误;
当x>时,y随x的增大而减小,当x<时,y随x的增大而增大,故③正确;
根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×=3,小于3+1=1,故④错误.
故选B.
考点:1、抛物线与x轴的交点;2、二次函数的性质
8、A
【解析】
利用角平分线得到∠ABE=∠CBE,矩形对边平行得到∠AEB=∠CBE.那么可得到∠ABE=∠AEB,可得到AB=AE.那么根据AE的不同情况得到矩形各边长,进而求得周长.
【详解】
∵矩形ABCD中BE是角平分线.
∴∠ABE=∠EBC.
∵AD∥BC.
∴∠AEB=∠EBC.
∴∠AEB=∠ABE.
∴AB=AE.
平分线把矩形的一边分成3cm和5cm.
当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;
当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.
故选A.
本题主要运用了矩形性质,角平分线的定义和等角对等边知识,正确地进行分情况讨论是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.
【详解】
解:∵四边形AFCE是正方形,
∴AE=EC,∠E=90°,
△ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,
∴△ABF≌△ADE,
∴正方形AFCE的面积=四边形ABCD的面积=18cm1.
∴AE=CE==,
∴AC=AE=2cm.
故答案为:2.
本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.
10、x≥1.
【解析】
根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
【详解】
解:根据题意得,x﹣1≥0且x≠0,
解得x≥1且x≠0,
所以,自变量x的取值范围是x≥1.
故答案为x≥1.
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
11、2
【解析】
用因式分解法可以求出方程的两个根分别是3和1,根据等腰三角形的三边关系,腰应该是1,底是3,然后可以求出三角形的周长.
【详解】
x2-9x+18=0
(x-3)(x-1)=0
解得x1=3,x2=1.
由三角形的三边关系可得:腰长是1,底边是3,
所故周长是:1+1+3=2.
故答案为:2.
此题考查解一元二次方程-因式分解,解题关键在于用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.
12、x≤
【解析】
∵代数式在实数范围内有意义,
∴,解得:.
故答案为:.
13、.
【解析】
根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.
【详解】
根据二次根式被开方数必须是非负数的条件,得.
本题考查二次根式有意义的条件,牢记被开方数必须是非负数.
三、解答题(本大题共5个小题,共48分)
14、-2.
【解析】
试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.
试题解析:原式=
==
解得-1≤x<,
∴不等式组的整数解为-1,0,1,2
若分式有意义,只能取x=2,
∴原式=-=-2
【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.
15、 (1)今年5月份每台手机售价4000元;(2)5种生产方案;(3)a的值应为2元,最大利润为7500元.
【解析】
(1)设今年5月份手机每台售价为m元,则去年同期每台售价为(m+100)元,根据数量=总价÷单价结合今年5月份与去年同期的销售数量相同,即可得出关于m的分式方程,解之经检验后即可得出结论;
(2)设生产手机x台,则生产笔记本电脑(15-x)台,根据总价=单价×数量结合总价不少于4.8万元不能超过高于5万元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,由该范围内整数的个数即可得出方案的种数;
(3)设总获利为w元,根据利润=销售收入-成本,即可得出w关于x的一次函数关系式,由w的值与x无关,即可得出a-2=0,解之即可求出a值.
【详解】
(1)设今年5月份手机每台售价为m元,则去年同期每台售价为(m+100)元,
根据题意得:,
解得:m=4000,
经检验,m=4000是原方程的根且符合题意.
答:今年5月份手机每台售价为4000元.
(2)设生产手机x台,则生产笔记本电脑(15-x)台,
根据题意得:,
解得:6≤x≤1,
∴x的正整数解为6、7、8、9、1.
答:共有5种生产方案.
(3)设总获利为w元,
根据题意得:w=(4000-3500)x+(3800-20-a)(15-x)=(a-2)x+12000-15a.
∵w的值与x值无关,
∴a-2=0,即a=2.
当a=2时,最大利润为12000-15×2=7500元.
本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据数量关系,找出w关于x的函数关系式.
16、 (1)m=1;y =1x﹣1;(1)S△AOC=1;(3)x>1.
【解析】
(1)把C(m,1)代入y=x得m=1,可得C的坐标,且已知B点的坐标,即可求得一次函数解析式为y = 1x﹣1.
(1) 把y=0代入y=1x﹣1得x=1,则可得A点坐标,即可求得△AOC的面积.
(3) 根据一次函数图形,可知y =kx +b的值大于函数y=x的值,即为自变量x的取值范围是x>1.
【详解】
解:(1)把C(m,1)代入y=x得m=1,
则点C的坐标为(1,1),
把C(1,1),B(0, -1)代入y = kx + b得
解得
所以一次函数解析式为y = 1x﹣1;
(1)把y=0代入y=1x﹣1得x=1,则A点坐标为(1,0),
所以S△AOC=×1×1=1;
(3)根据一次函数图形,可知y =kx +b的值大于函数y=x的值,即为自变量x的取值范围是x>1.
此题考查一次函数,解题关键在于利用待定系数法求一次函数解析式.
17、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
【解析】
(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
【详解】
(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
故答案为20,1.
(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
答:该班级男生有2人.
(1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
∵2>,∴男生比女生的波动幅度大.
本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
18、36πcm2
【解析】
用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.
【详解】
阴影部分面积=πR2-4πr2
=π(R2-4r2)
=π(R-2r)(R+2r)
=π×﹙6.8+2×1.6﹚×﹙6.8-2×1.6﹚
=36π(cm2).
本题考查因式分解的运用,看清题意利用圆的面积计算公式列出代数式,进一步利用提取公因式法和平方差公式因式分解解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(1)、;(2)、1.
【解析】
试题分析:(1)根据所给等式确定出一般规律,写出即可;
(2)先将各式分母有理化,此时发现除第二项和倒数第二项外,其他各项的和为0,故可求出答案.
解:(1)﹣
(2)原式=[( ﹣1)+( ﹣ )+( ﹣ )+…+( ﹣ )]( +1)
=( ﹣1)( +1)
=( )2﹣12
=2016﹣1
=1.
点睛:本题主要考查了代数式的探索与规律,二次根式的混合运算,根据所给的等式找到规律是解题的关键.
20、8 y=1x+1.
【解析】
(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,
(Ⅱ)利用待定系数法求出一次函数解析式即可.
【详解】
(Ⅰ)该城市出租车3千米内收费8元,
即该地区出租车的起步价是8元;
(Ⅱ)依题意设y与x的函数关系为y=kx+b,
∵x=3时,y=8,x=8时,y=18;
∴,
解得;
所以所求函数关系式为:y=1x+1(x>3).
故答案为:8;y=1x+1.
此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.
21、8
【解析】
解:设边数为n,由题意得,
180(n-2)=3603
解得n=8.
所以这个多边形的边数是8.
22、2.
【解析】
以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.
【详解】
以BC为边作等边三角形BCG,连接FG,AG,
作GH⊥AC交AC的延长线于H,
∵△BDE和△BCG是等边三角形,
∴DC=EG,
∴∠FDC=∠FEG=120°,
∵DF=EF,
∴△DFC≌△EFG(SAS),
∴FC=FG,
∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,
∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,
∵BC=CG=AB=2,AC=2,
在Rt△CGH中,∠GCH=30°,CG=2,
∴GH=1,CH=,
∴AG= ==2,
∴AF+CF的最小值是2.
此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.
23、0.3
【解析】
根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.
【详解】
解:∵第1、2、3、4组的频数分别是2、8、10、15,
∴50-2-8-10-15=15
∴15÷50=0.3
故答案为0.3.
此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1) (2)
【解析】
利用因式分解法求一元二次方程.
【详解】
解:(1)分解因式得:
解得
(2)移项得:
分解因式得:
解得:
本题考查了一元二次方程的解法,根据题选择合适的解法是解题的关键.
25、(1)A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 时,y 有最大值,最大值为 11000 元.
【解析】
(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500)元,根据用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样,列分式方程即可解决问题;
(2)根据总利润=A 型的利润+B 型的利润,列出函数关系式即可;
(3)利用一次函数的性质即可解决问题.
【详解】
解:(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500) 元,
由题意:=,
解得:x=2500,
经检验:x=2500 是分式方程的解,
答:A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;
(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);
(3)∵y=300m+500(30﹣m)=﹣200m+15000,
∵﹣200<0,20≤m≤30,
∴m=20 时,y 有最大值,最大值为 11000 元.
本题考查了分式方程的应用,一次函数的应用等知识,读懂题意,找准等量关系列出方程,找准数量关系列出函数关系是解题的关键.
26、(1)图见解析,三角形面积为2;(2)见解析.
【解析】
(1)利用数形结合的思想解决问题即可,
(2)作出边长为 的正方形即可.
【详解】
解:(1)如图①中,△ABC即为所求,因,
所以△ABC为直角三角形,则,
故答案为2;
(2)如图2中,正方形ABCD即为所求.
本题考查作图-应用与设计,勾股定理,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
批阅人
-1
0
1
3
-3
1
3
1
统计量
平均数(次)
中位数(次)
众数(次)
方差
…
该班级男生
…
2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年临沧市重点中学九上数学开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。