年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年山东省菏泽市名校数学九年级第一学期开学经典模拟试题【含答案】

    2024年山东省菏泽市名校数学九年级第一学期开学经典模拟试题【含答案】第1页
    2024年山东省菏泽市名校数学九年级第一学期开学经典模拟试题【含答案】第2页
    2024年山东省菏泽市名校数学九年级第一学期开学经典模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山东省菏泽市名校数学九年级第一学期开学经典模拟试题【含答案】

    展开

    这是一份2024年山东省菏泽市名校数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)用配方法解方程,变形后的结果正确的是( )
    A.B.C.D.
    2、(4分)在矩形中,,,点是上一点,翻折,得,点落在上,则的值是( )
    A.1B.
    C.D.
    3、(4分)如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为( )
    A.7B.9C.11D.14
    4、(4分)如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为( )
    A.7B.6C.5D.4
    5、(4分)若关于x的不等式组的解集为x<3,则k的取值范围为( )
    A.k>1B.k<1C.k≥1D.k≤1
    6、(4分)小明家、食堂,图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y(km)与时间x(min)之间的对应关系,根据图象,下列说法正确的是( )
    A.小明吃早餐用了25min
    B.食堂到图书馆的距离为0.6km
    C.小明读报用了30min
    D.小明从图书馆回家的速度为0.8km/min
    7、(4分)如图,一次函数的图象与两坐标轴分别交于、两点,点是线段上一动点(不与点A、B重合),过点分别作、垂直于轴、轴于点、,当点从点开始向点运动时,则矩形的周长( )
    A.不变B.逐渐变大C.逐渐变小D.先变小后变大
    8、(4分)在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
    这些运动员跳高成绩的中位数和众数分别是( )
    A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为_____.
    10、(4分)如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF最小值是________.
    11、(4分)如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“_____”.
    12、(4分)如图,将矩形沿折叠,使点落在边上的点处,点落在点处,已知,连接,则__________.
    13、(4分)如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:
    (1).
    (2).
    (3).
    (4)解方程:.
    15、(8分)某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:

    (1)八年级(1)班共有 名学生;
    (2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数 ;
    (3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.
    16、(8分)图①,图②均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A在格点上.试在网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
    (1)在图①中,画出以点A为顶点的非特殊的平行四边形.
    (2)在图②中,画出以点A为对角线交点的非特殊的平行四边形.
    17、(10分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
    (1)求证:四边形ABCD是菱形;
    (2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.
    18、(10分)已知矩形周长为18,其中一条边长为x,设另一边长为y.
    (1)写出y与x的函数关系式;
    (2)求自变量x的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)函数的自变量x的取值范围是 .
    20、(4分)比较大小:________.
    21、(4分)2018年3月全国两会政府工作报告进一步强调“房子是用来住的,不是用来炒的”定位,继续实行差别化调控。这一年被称为史上房地产调控政策最密集、最严厉的年份。因此,房地产开发公司为了缓解年终资金周转和财务报表的压力,通常在年底大量促销。重庆某房地产开发公司一方面在“高层、洋房、别墅”三种业态的地产产品中作特价活动;另一方面,公司制定了销售刺激政策,对卖出特价的员工进行个人奖励:每卖出一套高层特价房奖励1万元,每卖出一套洋房特价房奖励2万元,每卖出一套别墅特价房奖励4万元.公司将销售人员分成三个小组,经统计,第一组平均每人售出6套高层特价房、4套洋房特价房、3套别墅特价房;第二组平均每人售出2套高层特价房、2套洋房特价房、1套别墅特价房;第三组平均每人售出8套高层特价房、5套洋房特价房。这三组销售人员在此次活动中共获得奖励466万元,其中通过销售洋房特价房所获得的奖励为216万元,且第三组销售人员的人数不超过20人。则第三组销售人员的人数比第一组销售人员的人数多___人.
    22、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:
    根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.
    23、(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是_______度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)当a在什么范围内取值时,关于x的一元一次方程的解满足?
    25、(10分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.
    (1)如图1,当点在菱形内部或边上时,连接,与的数量关系是______,与的位置关系是______;
    (2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
    (3)如图4,当点在线段的延长线上时,连接,若,,求四边形的面积.
    26、(12分)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.
    (1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;
    (2)如图2,若DA=DE,求证:BF+DF=AF.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    方程移项后,配方得到结果,即可作出判断.
    【详解】
    解:方程移项得:x2-8x=-9,配方得:x2-8x+16=7,即(x-4)2=7,
    故选:A.
    此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
    2、D
    【解析】
    设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BC`=BC=5,EC`=CE=x,DE=CD-CE=3-x.在Rt△ABC`中利用勾股定理求出AC`的长度,进而求出DC`的长度;然后在Rt△DEC`中根据勾股定理列出关于x的方程,即可解决问题.
    【详解】
    设CE=x.
    ∵四边形ABCD是矩形,
    ∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
    ∵将△BCE沿BE折叠,使点C恰好落在AD边上的点C`处,
    ∴B C`=BC=5,E C`=CE=x,DE=CD−CE=3−x.
    在Rt△AB C`中,由勾股定理得:
    A C`=5−3=16,
    ∴A C`=4,D C`=5−4=1.
    在Rt△DE C`中,由勾股定理得:
    E C`=DE+D C`,
    即x=(3−x) +1,
    解得:x=.
    故选D
    此题考查翻折变换(折叠问题),解题关键在于利用勾股定理进行计算
    3、B
    【解析】
    先确定出CD=9,再利用角平分线上的点到两边的距离相等,即可得出结论.
    【详解】
    解:
    ∵CD:BD=3:1.
    设CD=3x,则BD=1x,
    ∴BC=CD+BD=7x,
    ∵BC=21,
    ∴7x=21,
    ∴x=3,
    ∴CD=9,
    过点D作DE⊥AB于E,
    ∵AD是∠BAC的平分线,∠C=90°,
    ∴DE=CD=9,
    ∴点D到AB边的距离是9,
    故选B.
    本题考查了角平分线的性质,线段的和差,解本题的关键是掌握角平分线的性质定理.
    4、B
    【解析】
    根据平移的性质分别求出a、b的值,计算即可.
    【详解】
    解:点A的横坐标为-1,点C的横坐标为1,
    则线段AB先向右平移2个单位,
    ∵点B的横坐标为1,
    ∴点D的横坐标为3,即b=3,
    同理,a=3,
    ∴a+b=3+3=6,
    故选:B.
    本题考查的是坐标与图形变化-平移,掌握平移变换与坐标变化之间的规律是解题的关键.
    5、C
    【解析】
    不等式整理后,由已知解集确定出k的范围即可.
    【详解】
    解:不等式整理得:,
    由不等式组的解集为x<3,
    所以k+2≥3,得到k的范围是k≥1,
    故选:C.
    本题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    6、C
    【解析】
    根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,本题得以解决.
    【详解】
    由图象可得,
    小明吃早餐用了25﹣8=17min,故选项A错误;
    食堂到图书馆的距离为:0.8﹣0.6=0.2km,故选项B错误;
    小明读报用了58﹣28=30min,故选项C正确;
    小明从图书馆回家的速度为:0.8÷(68﹣58)=0.08km/min,故选项D错误;
    故选C.
    本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    7、A
    【解析】
    根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+1),根据矩形的周长公式即可得出C矩形CDOE=2,此题得解.
    【详解】
    解:设点的坐标为,,
    则,,

    故选:.
    本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.
    8、A
    【解析】
    根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.
    【详解】
    将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,,1.1,1.1,1.75,1.75,1.75,1.80,1.80,
    众数为:1.65;
    中位数为:1.1.
    故选:A.
    本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.
    【详解】
    解:,
    解①得,x<5;
    解②得,
    ∴不等式组的解集为;
    ∵不等式有且只有四个整数解,
    ∴,
    解得,﹣1<a≤1;
    解分式方程得,y=1﹣a;
    ∵方程的解为非负数,
    ∴1﹣a≥0;即a≤1;
    综上可知,﹣1<a≤1,
    ∵a是整数,
    ∴a=﹣1,0,1,1;
    ∴﹣1+0+1+1=1
    故答案为1.
    本题考查了解一元一次不等式组,分式方程,根据题目条件确定a的取值范围,进一步确定符合条件的整数a,相加求和即可
    10、4.8
    【解析】
    【分析】连接AP,由题意知四边形AFPE是矩形,由矩形的性质知EF=AP,所以当AP最小时,EF最小,根据垂线段最短进行解答即可.
    【详解】如图,连接AP,
    由题意知,四边形AFPE是矩形,则有AP=EF,
    当EF取最小值时,则AP也取最小值,
    ∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AP有最小值,此时EF有最小值,
    由勾股定理知BC==10,
    ∵S△ABC=AB•AC=BC•AP,
    ∴AP=4.8,
    即EF的最小值是4.8,
    故答案为:4.8.
    【点睛】本题考查了矩形的判定与性质、勾股定理、垂线段最短等,正确分析是解题的关键.
    11、HL
    【解析】
    分析: 需证△BCD和△CBE是直角三角形,可证△BCD≌△CBE的依据是HL.
    详解: ∵BE、CD是△ABC的高,
    ∴∠CDB=∠BEC=90°,
    在Rt△BCD和Rt△CBE中,
    BD=EC,BC=CB,
    ∴Rt△BCD≌Rt△CBE(HL),
    故答案为HL.
    点睛: 本题考查全等三角形判定定理中的判定直角三角形全等的HL定理.
    12、75°
    【解析】
    【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.
    【详解】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,
    ∴∠EBG=∠EGB,
    ∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,
    又∵AD∥BC,
    ∴∠AGB=∠GBC,
    ∴∠AGB=∠BGH,
    ∵∠DGH=30°,
    ∴∠AGH=150°,
    ∴∠AGB=∠AGH=75°,
    故答案为:75°.
    【点睛】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    13、1.
    【解析】
    根据正方形的性质可得出AB=AD、∠BAD=90°,由AB=AG、∠AGB=70°利用等腰三角形的性质及三角形内角和定理可求出∠BAG的度数,由∠DAG=90°-∠BAG可求出∠DAG的度数,由等腰三角形的性质结合三角形内角和定理可求出∠AGD的度数,再由∠BGD=∠AGB+∠AGD可求出∠BGD的度数.
    【详解】
    ∵四边形ABCD为正方形,
    ∴AB=AD,∠BAD=90°.
    ∵AB=AG,∠AGB=70°,
    ∴∠BAG=180°﹣70°﹣70°=40°,
    ∴∠DAG=90°﹣∠BAG=50°,
    ∴∠AGD=(180°﹣∠DAG)=65°,
    ∴∠BGD=∠AGB+∠AGD=1°.
    故答案为:1.
    本题考查了正方形的性质、等腰三角形的性质以及三角形内角和定理,根据等腰三角形的性质结合三角形内角和定理求出∠AGD的度数是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)-1;(2)+1;(3);(4)x=-15
    【解析】
    (1)根据二次根式的运算法则合并计算即可;(2)根据二次根式的运算法则合并计算即可;(3)先把分母因式分解,再通分,按照同分母分式的加减法法则计算即可;(4)分式两边同时乘以(x+3)(x-3),再去括号、移项、整理并检验即可得答案.
    【详解】
    (1);
    =-3+-1
    =-1
    (2)
    =-1+-2
    =+1
    (3)



    (4)解方程
    去分母得:(x+3)2=4(x-3)+(x+3)(x-3)
    去括号得:x2+6x+9=4x-12+x2-9
    移项得:2x=-30
    解得x=-15
    检验:x=-15 是原方程的根
    本题考查二次根式的计算、分式的减法及解分式方程,熟练掌握运算法则是解题关键.
    15、(1)50;(2)见解析;57.6°;(3)368.
    【解析】
    (1)根据“不得奖”人数及其百分比可得总人数;
    (2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;
    (3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.
    【详解】
    解:(1)八年级(1)班共有 =50
    (2)获一等奖人数为:50×10%=5(人),
    补全图形如下:
    ∵获“二等奖”人数所长百分比为1−50%−10%−20%−4%=16%,
    “二等奖”对应的扇形的圆心角度数是×16%=57.6,
    (3)(名)
    此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据
    16、(1)见解析;(2)见解析.
    【解析】
    (1)画出底为3,高为2的平行四边形ABCD即可.
    (2)利用数形结合的思想解决问题即可.
    【详解】
    解:(1)如图,平行四边形ABCD即为所求.
    (2)如图,平行四边形EFGH即为所求.
    图① 图②
    本题考查作图-应用与设计,平行四边形的判定和性质等知识,解题的关键是学会题数形结合的思想思考问题.
    17、(1)详见解析;(2)1.
    【解析】
    (1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;
    (2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.
    【详解】
    (1)证明:∵AD∥BC,
    ∴∠ADB=∠CBD,
    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    ∴∠ADB=∠ABD,
    ∴AD=AB,
    ∵BA=BC,
    ∴AD=BC,
    ∴四边形ABCD是平行四边形,
    ∵BA=BC,
    ∴四边形ABCD是菱形;
    (2)解:∵DE⊥BD,
    ∴∠BDE=90°,
    ∴∠DBC+∠E=∠BDC+∠CDE=90°,
    ∵CB=CD,
    ∴∠DBC=∠BDC,
    ∴∠CDE=∠E,
    ∴CD=CE=BC,
    ∴BE=2BC=10,
    ∵BD=8,
    ∴DE==6,
    ∵四边形ABCD是菱形,
    ∴AD=AB=BC=5,
    ∴四边形ABED的周长=AD+AB+BE+DE=1.
    本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.
    18、(1)y=1﹣x;(2)0<x<1.
    【解析】
    (1)直接利用矩形周长求法得出y与x之间的函数关系式;
    (2)利用矩形的性质分析得出答案.
    【详解】
    (1)∵矩形周长为18,其中一条边长为x,设另一边长为y,
    ∴2(x+y)=18,
    则y=1﹣x;
    (2)由题意可得:1﹣x>0,
    解得:0<x<1.
    此题主要考查了函数关系式以及自变量的取值范围,正确得出函数关系式是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
    20、<
    【解析】
    试题解析:∵


    21、9
    【解析】
    假设第一组有x人,第二组y人,第三组z人,那么销售高层特价房共获奖励可表示为1×(6x+2y+8z)万元,销售洋房特价房共获奖励可表示为2×(4x+2y+5z)万元,销售别墅特价房共获奖励4×(3x+y)万元.
    【详解】
    设第一组有x人,第二组y人,第三组z人,依题意列三元一次方程组:

    化简①得 18x+6y+8z=250 ④
    化简②得 4x+2y+5z=108 ⑤
    由④-⑤得 14x+4y+3z=142 ⑥
    由④×2-⑥×3得-6x+7z=74 ⑦
    即z+6(z-x)=74
    由z≤20得 74-6(z-x)≤20
    解得z-x≥9
    故第三组销售人员的人数比第一组销售人员的人数多 9人.
    此题考查三元一次方程组的应用,解题关键在于列出方程.
    22、甲
    【解析】
    首先比较平均数,平均数相同时选择方差较小的运动员参加.
    【详解】
    ∵ ,
    ∴从甲和丙中选择一人参加比赛,
    ∵ ,
    ∴选择甲参赛,
    故答案为甲.
    此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    23、35.
    【解析】
    利用四边形内角和得到∠BAD’,从而得到∠α
    【详解】
    如图,由矩形性质得到∠BAD’+∠α=90°;因为∠2=∠1=125°,所以∠BAD’=180°-∠2=55°,所以∠α=90°-55°=35°,故填35
    本题主要考查矩形性质和四边形内角和性质等知识点,本题关键在于找到∠2与∠BAD互补
    二、解答题(本大题共3个小题,共30分)
    24、
    【解析】
    先求出一元一次方程的解,然后根据解为,求出a的范围.
    【详解】
    解:去分母得:4x+2a=3−3x,
    移项得:7x=3−2a,
    解得,
    因为,所以,
    所以.
    此题考查解一元一次不等式,一元一次方程的解,解题关键在于求出一元一次方程的解.
    25、(1),;(2)结论仍然成立,理由:略;(3)
    【解析】
    (1)连接AC,根据菱形的性质和等边三角形的性质得出△BAP≌△CAE,再延长交于, 根据全等三角形的性质即可得出;
    (2)结论仍然成立.证明方法同(1);
    (3)根据(2)可知△BAP≌△CAE,根据勾股定理分别求出AP和EC的长,即可解决问题;
    【详解】
    (1)如图1中,结论:,.
    理由:连接.
    ∵四边形是菱形,,
    ∴,都是等边三角形,,
    ∴,,
    ∵是等边三角形,
    ∴,,
    ∵,
    ∴,

    ∴,
    ∴,,
    延长交于,
    ∵,
    ∴,
    ∴,即.
    故答案为,.
    (2)结论仍然成立.
    理由:选图2,连接交于,设交于.
    ∵四边形是菱形,,
    ∴,都是等边三角形,,
    ∴,,
    ∵是等边三角形,
    ∴,,
    ∴.

    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,即.
    选图3,连接交于,设交于.
    ∵四边形ABCD是菱形,,
    ∴,都是等边三角形,,
    ∵是等边三角形,
    ∴,,
    ∴.

    ∴,
    ∴,,
    ∵,
    ∴,
    ∴,即.
    (3),
    由(2)可知,,
    在菱形中,,
    ∴,
    ∵,,
    在中,,
    ∴,
    ∵与是菱形的对角线,
    ∴,,
    ∴,
    ∴,,
    ∴,
    在中,,
    ∴.
    本题考查四边形综合题、菱形的性质、等边三角形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是正确添加常用辅助线,寻找全等三角形解决问题,属于中考压轴题.
    26、 (1)AB=2;(1)证明见解析.
    【解析】
    (1)设BM=x,则CM=1x,BC=BA=3x;在Rt△ABM中,E为斜边AM中点,根据直角三角形斜边的中线等于斜边的一半可得AM=1BE=1.由勾股定理可得AM1=MB1+AB1,即可得30=x1+9x1,解得x=1.所以AB=3x=2;(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.证明△ABF≌△ADH,根据全等三角形的性质可得AF=AH,BF=DH.再由Rt△FAH是等腰直角三角形,可得HF=AF.由HF=DH+DF=BF+DF,可得BF+DF=AF.
    【详解】
    解:(1)设BM=x,则CM=1x,BC=3x,
    ∵BA=BC,
    ∴BA=3x.
    在Rt△ABM中,E为斜边AM中点,
    ∴AM=1BE=1.
    由勾股定理可得AM1=MB1+AB1,
    即30=x1+9x1,解得x=1.
    ∴AB=3x=2.
    (1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.
    ∵DF平分∠CDE,
    ∴∠1=∠1.
    ∵DE=DA,DP⊥AF
    ∴∠3=∠3.
    ∵∠1+∠1+∠3+∠3=90°,
    ∴∠1+∠3=35°.
    ∴∠DFP=90°﹣35°=35°.
    ∴AH=AF.
    ∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,
    ∴∠BAF=∠DAH.
    又AB=AD,
    ∴△ABF≌△ADH(SAS).
    ∴AF=AH,BF=DH.
    ∵Rt△FAH是等腰直角三角形,
    ∴HF=AF.
    ∵HF=DH+DF=BF+DF,
    ∴BF+DF=AF.
    本题是四边形的综合题,考查了正方形的性质、勾股定理、全等三角形的判定与性质及等腰直角三角形的性质等知识点,熟练运用相关知识是解决问题的关键.
    题号





    总分
    得分
    批阅人
    成绩(m)
    1.50
    1.60
    1.65
    1.70
    1.75
    1.80
    人数
    1
    2
    4
    3
    3
    2




    平均数(cm)
    561
    560
    561
    560
    方差s2(cm2)
    3.5
    3.5
    15.5
    16.5

    相关试卷

    2024年内蒙古包头市名校九年级数学第一学期开学经典模拟试题【含答案】:

    这是一份2024年内蒙古包头市名校九年级数学第一学期开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省阳谷县数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2024-2025学年山东省阳谷县数学九年级第一学期开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省菏泽市鄄城县数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2024-2025学年山东省菏泽市鄄城县数学九年级第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map