|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年山东省青岛市开发区八中学数学九年级第一学期开学统考试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年山东省青岛市开发区八中学数学九年级第一学期开学统考试题【含答案】01
    2024-2025学年山东省青岛市开发区八中学数学九年级第一学期开学统考试题【含答案】02
    2024-2025学年山东省青岛市开发区八中学数学九年级第一学期开学统考试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年山东省青岛市开发区八中学数学九年级第一学期开学统考试题【含答案】

    展开
    这是一份2024-2025学年山东省青岛市开发区八中学数学九年级第一学期开学统考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若式子有意义,则实数的取值范围是( )
    A.且B.C.D.
    2、(4分)计算的结果是( )
    A.2B.﹣2C.±2D.±4
    3、(4分)如图,BE、CF分别是△ABC边AC、AB上的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是( )
    A.21B.18C.15D.13
    4、(4分)直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( )
    A.B.C.D.
    5、(4分)若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( )
    A.梯形B.矩形C.菱形D.正方形
    6、(4分)某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是( )
    A.平均数是2B.众数是2C.中位数是2D.方差是2
    7、(4分)若一组数据的极差是6,则x的值为( ).
    A.7B.8C.9D.7或
    8、(4分)用配方法解方程,方程可变形为( )
    A.x  12 4B.x  12  4C.x  12  2D.x  12 2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知函数,当= _______ 时,直线过原点;为 _______ 数时,函数随的增大而增大 .
    10、(4分)已知:线段
    求作:菱形,使得且.
    以下是小丁同学的作法:
    ①作线段;
    ②分别以点,为圆心,线段的长为半径作弧,两弧交于点;
    ③再分别以点,为圆心,线段的长为半径作弧,两弧交于点;
    ④连接,,.
    则四边形即为所求作的菱形.(如图)
    老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.
    11、(4分)下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.
    12、(4分)如图,在矩形中,,对角线,相交于点,垂直平分于点,则的长为__________.
    13、(4分)菱形的边长为5,一条对角线长为8,则菱形的面积为____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在正方形中,点是直线上一点.连接,将线段绕点顺时针旋转,得到线段,连接.
    (1)如图1.若点在线段的延长线上过点作于.与对角线交于点.
    ①请仔细阅读题目,根据题意在图上补全图形;②求证:.
    (2)若点在射线上,直接写出,,三条线段之间的数量关系(不必写过程).
    15、(8分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为分.前名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为分),现得知号选手的综合成绩为分.
    (1)求笔试成绩和面试成绩各占的百分比:
    (2)求出其余两名选手的综合成绩,并以综合成绩排序确定这三名选手的名次。
    16、(8分)(1)计算:.
    (2)计算:.
    (3)先化简,再求值:,其中满足.
    (4)解方程:.
    17、(10分)在平面直角坐标系xOy中,对于点,若点Q的坐标为,其中a为常数,则称点Q是点P的“a级关联点”例如,点的“3级关联点”为,即.
    已知点的“级关联点”是点,点B的“2级关联点”是,求点和点B的坐标;
    已知点的“级关联点”位于y轴上,求的坐标;
    已知点,,点和它的“n级关联点”都位于线段CD上,请直接写出n的取值范围.
    18、(10分)已知一条直线AB经过点(1,4)和(-1,-2)
    (1)求直线AB的解析式.
    (2)求直线AB和直线CD:y=x+3的交点M的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有_____(只填序号).
    20、(4分)关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是_____.
    21、(4分)如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数的图象经过P,D两点,则AB的长是______.
    22、(4分)如图,在反比例函数与的图象上分别有一点,,连接交轴于点,若且,则__________.
    23、(4分)若m+n=3,则2m2+4mn+2n2-6的值为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.
    小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.
    小明说根据小东所得的数据可以求出CD的长度.
    你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.
    25、(10分)如图, 在中,,是延长线上一点,点是的中点。
    (1)实践与操作:①作的平分线;②连接并延长交于点,连接(尺规作图,保留作图痕迹,不写作法,在图中标明相应字母);
    (2)猜想与证明:猜想四边形的形状,并说明理由。
    26、(12分)(1)操作思考:如图1,在平面直角坐标系中,等腰直角的直角顶点在原点,将其绕着点旋转,若顶点恰好落在点处.则①的长为______;②点的坐标为______(直接写结果)
    (2)感悟应用:如图2,在平面直角坐标系中,将等腰直角如图放置,直角顶点,点,试求直线的函数表达式.
    (3)拓展研究:如图3,在直角坐标系中,点,过点作轴,垂足为点,作轴,垂足为点是线段上的一个动点,点是直线上一动点.问是否存在以点为直角顶点的等腰直角,若存在,请直接写出此时点的坐标,若不存在,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据分式及二次根式的性质即可求解.
    【详解】
    依题意得x≥0,x-2≠0,故且
    选A.
    此题主要考查分式有意义的条件,解题的关键是熟知二次根式的性质及分母不为零.
    2、A
    【解析】
    直接利用二次根式的性质化简即可求出答案.
    【详解】
    =2
    故选:A.
    此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
    3、D
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半,先求出EM=FM= BC,再求△EFM的周长.
    【详解】
    解:∵BE、CF分别是△ABC的高,M为BC的中点,BC=8,
    ∴在Rt△BCE中,EM=BC=4,
    在Rt△BCF中,FM=BC=4,
    又∵EF=5,
    ∴△EFM的周长=EM+FM+EF=4+4+5=1.
    故选:D.
    本题主要利用直角三角形斜边上的中线等于斜边的一半的性质.
    4、C
    【解析】
    根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.
    【详解】
    设直角三角形的两条直角边分别为x、y,
    斜边上的中线为d,
    斜边长为2d,
    由勾股定理得,,
    直角三角形的面积为S,

    则,
    则,

    这个三角形周长为:,
    故选C.
    【点睛】本题考查了勾股定理的应用,解题的关键是根据直角三角形的两条直角边长分别是a,b,斜边长为c,得出.
    5、C
    【解析】
    如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,
    则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,
    根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,
    ∵AC=BD,
    ∴EH=FG=FG=EF,
    ∴四边形EFGH是菱形.
    故选C.
    6、D
    【解析】
    根据众数、中位数、平均数和方差的计算公式分别进行解答,即可得出答案.
    【详解】
    解:平均数是:(2+3+2+1+2)÷5=2;
    数据2出现了3次,次数最多,则众数是2;
    数据按从小到大排列:1,2,2,2,3,则中位数是2;
    方差是:[(2﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2]=,
    则说法中错误的是D;
    故选D.
    本题考查众数、中位数、平均数和方差,平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量;众数是一组数据中出现次数最多的数.
    7、D
    【解析】
    试题分析:根据极差的定义,分两种情况:x为最大值或最小值:
    当x为最大值时,;当x是最小值时,.
    ∴x的值可能7或.
    故选D.
    考点:1.极差;2.分类思想的应用.
    8、B
    【解析】
    将的常数项变号后移项到方程右边,然后方程两边都加上,方程左边利用完全平方公式变形后,即可得到结果.
    【详解】

    移项得:,
    两边加上得:,
    变形得:,
    则原方程利用配方法变形为.
    故选.
    此题考查了利用配方法解一元二次方程,利用此方法的步骤为:1、将二次项系数化为“”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方,方程左边利用完全平方公式变形,方程右边为非负常数;4、开方转化为两个一元一次方程来求解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、 m>0
    【解析】
    分析:(1)根据正比例函数的性质可得出m的值;
    (2)根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.
    详解:直线过原点,则 ;即,解得: ;
    函数随的增大而增大 ,说明 ,即 ,解得:;
    故分别应填:;m>0 .
    点睛:本题考查的是一次函数的图象与系数的关系,熟知一次函数的定义及增减性是解答此题的关键.
    10、三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形
    【解析】
    利用作法和等边三角形的判定与性质得到∠A=60°,然后根据菱形的判定方法得到四边形ABCD为菱形.
    【详解】
    解:由作法得AD=BD=AB=a,CD=CB=a,
    ∴△ABD为等边三角形,AB=BC=CD=AD,
    ∴∠A=60°,四边形ABCD为菱形,
    故答案为:三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形.
    本题考查了尺规作图,及菱形的判定,熟练掌握尺规作图,及菱形的判定知识是解决本题的关键.
    11、(-3,1)
    【解析】
    根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.
    【详解】
    根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,
    ∴西便门的坐标为(−3,1),
    故答案为(−3,1);
    此题考查坐标确定位置,解题关键在于建立直角坐标系.
    12、
    【解析】
    结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=OD=4,根据勾股定理可求AD的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AO=BO=CO=DO,
    ∵AE垂直平分OB于点E,
    ∴AO=AB=4,
    ∴AO=OB=AB=4,
    ∴BD=8,
    在Rt△ABD中,AD==.
    故答案为:.
    本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.
    13、1
    【解析】
    菱形的对角线互相垂直平分,四边相等,可求出另一条对角线的长,再根据菱形的面积等于对角线乘积的一半求解即可.
    【详解】
    ∵菱形的边长为5,一条对角线长为8
    ∴另一条对角线的长
    ∴菱形的面积
    故答案为:1.
    本题考查了菱形的面积问题,掌握菱形的性质、菱形的面积公式是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)①见解析;②见解析;(2)​EC=(CD-PC)或EC=(CD+PC)
    【解析】
    (1)①构建题意画出图形即可;②想办法证明△APB≌△PEH即可;
    (2)结论:当点P在线段BC上时:. 当点P在线段BC的延长线上时:,构造全等三角形即可解决问题.
    【详解】
    解:(1)①补全图形如图所示.
    ②证明:线段绕点顺时针能转得到线段,

    四边形是正方形,

    于,
    ,,

    .


    ∴;
    (2)当点P在线段BC上时:.
    理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.
    易证△PCE≌△AMP,可得EC=PM,
    ∵CD-PC=BC-PC=PB,
    ∴EC=PM=PB=(CD-PC),
    当点P在线段BC的延长线上时:.
    理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.
    易证△PCE≌△AMP,可得EC=PM,
    ∵CD+PC=BC+PC=PB,
    ∴EC=PM=PB=(CD+PC).
    故答案为​EC=(CD-PC)或EC=(CD+PC).
    本题考查旋转变换、正方形的性质、全等三角形的判断和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    15、(1)笔试占,面试占;(2)第一名:2号,第二名:1号,第三名:3号.
    【解析】
    (1)设笔试成绩占百分比为,则面试成绩占比为,根据题意列出方程,求解即可;
    (2)根据笔试成绩和面试成绩各占的百分比,分别求出其余两名选手的综合成绩,即可得出答案.
    【详解】
    解:(1)设笔试成绩占百分比为,则面试成绩占比为.
    由题意,得
    ∴笔试成绩占,面试成绩占.
    (2)2号选手的综合成绩:
    3号选手的综合成绩:
    ∴三位选手按综合成绩排名为:第一名:2号,第二名:1号,第三名:3号.
    本题考查了加权平均数和一元一次方程的应用,熟知加权平均数的计算公式是解题的关键.
    16、(1);(2);(3),;(4)
    【解析】
    (1)(2)根据二次根式的乘法和加减法可以解答本题;
    (3)根据分式的加减法和除法可以化简题目中的式子,然后将整体代入求值即可解答本题;
    (4)根据解分式方程的方法,把分式方程化为整式方程,可以解答本题,注意验根.
    【详解】
    解:(1)原式=
    =;
    (2)原式=
    =;
    (3)原式=


    =,
    ∵,
    ∴,
    ∴原式=
    =;
    (4)去分母,得,,
    去括号,得,,
    移项,得,,
    合并同类项,得,,
    系数化为1,得,,
    检验:当时,,
    ∴是原方程的解.
    本题考查了二次根式的混合运算、分式的化简求值以及解分式方程,解答本题的关键是明确它们各自的解答方法,注意分式方程要检验.
    17、(1),;(2);(3).
    【解析】
    (1)根据关联点的定义,结合点的坐标即可得出结论.
    (2)根据关联点的定义和点M(m-1,2m)的“-3级关联点”M'位于y轴上,即可求出M'的坐标.
    (3)因为点C(-1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N'都位于线段CD上,可得到方程组,解答即可.
    【详解】
    解:点的“级关联点”是点,

    即.
    设点,
    点B的“2级关联点”是,

    解得

    点的“级关联点”为,
    位于y轴上,

    解得:


    点和它的“n级关联点”都位于线段CD上,




    解得:.
    本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,正确理解题意,灵活运用所学知识解决问题是解题的关键.
    18、(1)y=3x+1;(2)M(1,4).
    【解析】
    分析:设直线解析式为y=kx+b,然后把两个点的坐标代入得到关于k、b的方程组,然后解方程组即可.
    详解:(1)设直线解析式为y=kx+b,
    把(1,4)和(-1,-2)分别代入得 ,解得 ,
    所以直线解析式为y=3x+1.
    (2)由题意得 ,解得:,∴M(1,4).
    点睛:本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、①②④⑤
    【解析】
    ①②∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=⊂FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;
    ③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=,MC=DF=﹣2,∴FC=2﹣DF=2﹣(﹣2)=4﹣,S△AFC=CF•AD≠1,所以选项③不正确;
    ④AF===,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;
    ⑤在Rt△FEC中,EG⊥FC,∴=FG•CG,cs∠FCE=,∴CG===1,∴DG=CG,∴=FG•DG,故选项⑤正确;
    本题正确的结论有4个,
    故答案为①②④⑤.
    20、a<1且a≠1
    【解析】
    由关于x的一元二次方程ax2+2x+1=1有两个不相等的实数根,即可得判别式△>1,继而可求得a的范围.
    【详解】
    ∵关于x的一元二次方程ax2+2x+1=1有两个不相等的实数根,
    ∴△=b2﹣4ac=22﹣4×a×1=4﹣4a>1,
    解得:a<1,
    ∵方程ax2+2x+1=1是一元二次方程,
    ∴a≠1,
    ∴a的范围是:a<1且a≠1.
    故答案为:a<1且a≠1.
    此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>1.
    21、2
    【解析】
    设D(m,),则P(2m,),作PH⊥AB于H.根据正方形性质,构建方程可解决问题.
    【详解】
    解:设D(m,),则P(2m,),作PH⊥AB于H.
    故答案为:2
    本题考核知识点:反比例函数的图象、正方形性质. 解题关键点:利用参数构建方程解决问题.
    22、
    【解析】
    过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(-1,1)可得直线EF的解析式,求出点G的坐标后即可求解.
    【详解】
    过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:
    ∴EM∥GO∥FN
    ∵2EG=FG
    ∴根据平行线分线段成比例定理得:NO=2MO
    ∵E(-1,1)
    ∴MO=1
    ∴NO=2
    ∴点F的横坐标为2
    ∵F在的图象上
    ∴F(2,2)
    又∵E(-1,1)
    ∴由待定系数法可得:直线EF的解析式为:y=
    当x=0时,y=
    ∴G(0,)
    ∴OG=
    故答案为:.
    此题考查反比例函数的综合应用,平行线分线段成比例定理,待定系数法求一次函数的解析式,解题关键在于掌握待定系数法求解析式.
    23、1
    【解析】
    原式=2(m2+2mn+n2)-6,
    =2(m+n)2-6,
    =2×9-6,
    =1.
    二、解答题(本大题共3个小题,共30分)
    24、同意,CD=13 m.
    【解析】
    直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.
    【详解】
    同意
    连接BD,如图
    ∵AB=AD=5(m),∠A=60°
    ∴△ABD是等边三角形
    ∴BD=AB=5(m),∠ABD=60°
    ∴∠ABC=150°,
    ∴∠CBD=∠ABC-∠ABD=150°-60°=90°
    在Rt△CBD中,BD=5(m),BC=12(m),
    ∴(m)
    答:CD的长度为13m.
    此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD是等边三角形是解题关键.
    25、(1)①见解析,②见解析;(2)四边形是平行四边形,见解析.
    【解析】
    (1)根据角平分线的做法即可求解;
    (2)根据等腰三角形的性质及角平分线的性质证明,即可求证.
    【详解】
    (1)①作图正确并有轨迹。
    ②连接并延长交于点,连接;
    (2)解:四边形是平行四边形,
    理由如下:∵,
    ∴,
    ∴,即,
    ∵平分,∴,∴,
    ∴,
    ∵点时中点,∴,
    在与中

    ∴四边形是平行四边形。
    此题主要考查平行四边形的判定,解题的关键是熟知角平分线的做法及全等三角形的判定判断与性质.
    26、(1);(2);(3)
    【解析】
    (1)根据勾股定理可得OA长,由对应边相等可得B点坐标;
    (2)通过证明得出点B坐标,用待定系数法求直线的函数表达式;
    (3)设点Q坐标为,可通过证三角形全等的性质可得a的值,由Q点坐标可间接求出P点坐标.
    【详解】
    解:(1)如图1,作轴于F,轴于E.
    由A点坐标可知
    在中,根据勾股定理可得;
    为等腰直角三角形

    轴于F,轴于E




    所以B点坐标为:
    (2)如图,过点作轴.
    为等腰直角三角形



    ∴,
    ∴,
    ∴.
    设直线的表达式为
    将和代入,得

    解得,
    ∴直线的函数表达式.
    (3)如图3,分两种情况,点Q可在x轴下方和点Q在x轴上方
    设点Q坐标为,点P坐标为
    当点Q在x轴下方时,连接,过点作 交其延长线于M,则M点坐标为
    为等腰直角三角形



    由题意得

    解得 ,所以
    当点Q在x轴上方时,连接,过点作 交其延长线于N,则N点坐标为
    同理可得,
    由题意得

    解得 ,所以
    综上的坐标为:.
    本题是一次函数与三角形的综合,主要考查了一次函数解析式、全等三角形的证明及性质,灵活运用全等的性质求点的坐标是解题的关键.
    题号





    总分
    得分
    批阅人
    序号
    笔试成绩/分
    面试成绩/分
    相关试卷

    2024-2025学年莱芜市重点中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年莱芜市重点中学数学九年级第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省盐城市初级中学数学九年级第一学期开学统考试题【含答案】: 这是一份2024-2025学年江苏省盐城市初级中学数学九年级第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省江阴市澄西中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年江苏省江阴市澄西中学数学九年级第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map