2024年山东省莱西市数学九上开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( )
A.35°B.45°C.50°D.55°
2、(4分)小明得到育才学校数学课外兴趣小组成员的年龄情况统计如下表:
那么对于不同x的值,则下列关于年龄的统计量不会发生变化的是( )
A.众数,中位数B.中位数,方差C.平均数,中位数D.平均数,方差
3、(4分)下列图形中的曲线不表示y是x的函数的是( )
A.B.C.D.
4、(4分)如果分式有意义,那么的取值范围是( )
A.B.
C.D.或
5、(4分)下列各组数中,属于勾股数的是( )
A.1,,2B.1.5,2,2.5C.6,8,10D.5,6,7
6、(4分)把函数与的图象画在同一个直角坐标系中,正确的是( )
A.B.
C.D.
7、(4分)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )
A.B.
C.D.
8、(4分)函数中自变量的取值范围是( )
A.B.C.D.全体实数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.
10、(4分)若一组数据6,x,2,3,4的平均数是4,则这组数据的方差为______.
11、(4分)如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是______平方米.
12、(4分)在平面直角坐标系中,已知一次函数的图像经过,两点,若,则 .(填”>”,”<”或”=”)
13、(4分)关于 x 的方程 x2+5x+m=0 的一个根为﹣2,则另一个根是________ .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数的图象与反比例函数的图象交于第二、四象限的、两点,与、轴分别交于、两点,过点作轴于点,连接,且的面积为3,作点关于轴对称点.
(1)求一次函数和反比例函数的解析式;
(2)连接、,求的面积.
15、(8分)某网店销售单价分别为元/筒、元/筒的甲、乙两种羽毛球.根据消费者需求,该网店决定用不超过元购进甲、乙两种羽毛球共简.且甲种羽毛球的数量大于乙种羽毛球数量的.已知甲、乙两种羽毛球的进价分别为元/筒、元/筒。若设购进甲种羽毛球简.
(1)该网店共有几种进货方案?
(2)若所购进羽毛球均可全部售出,求该网店所获利润(元)与甲种羽毛球进货量(简)之间的函数关系式,并求利润的最大值
16、(8分) 先化简,再求值:(﹣x﹣1)÷,其中x=1.
17、(10分)在平面直角坐标系xOy中,点P到封闭图形F的“极差距离”D(P,W)定义如下:任取图形W上一点Q,记PQ长度的最大值为M,最小值为m(若P与Q重合,则PQ=0),则“极差距离”D(P,W)=M﹣m.如图,正方形ABCD的对角线交点恰与原点O重合,点A的坐标为(2,2)
(1)点O到线段AB的“极差距离”D(O,AB)=______.点K(5,2)到线段AB的“极差距离”D(K,AB)=______.
(2)记正方形ABCD为图形W,点P在x轴上,且“极差距离”D(P,W)=2,求直线AP的解析式.
18、(10分)某公司购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:
生产1吨甲产品所需成本费用为4000元,每吨售价4600元;
生产1吨乙产品所需成本费用为4500元,每吨售价5500元,
现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.
(1)写出m与x之间的关系式
(2)写出y与x之间的函数表达式,并写出自变量的范围
(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)9的算术平方根是 .
20、(4分)对任意的两实数,用表示其中较小的数,如,则方程的解是__________.
21、(4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去…若点, ,则点的坐标为________.
22、(4分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为_____.
23、(4分)如图,在平面直角坐标系中,已知OA=4,则点A的坐标为____________,直线OA的解析式为______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)画出函数y=2x-1的图象.
25、(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).
(1)求b,m的值;
(2)垂直于x轴的直线与直线l1,l2,分别交于点C,D,垂足为点E,设点E的坐标为(a,0)若线段CD长为2,求a的值.
26、(12分)(1)计算
(2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.
解方程
解:方程两边乘,得第一步
解得 第二步
检验:当时,.
所以,原分式方程的解是 第三步
小刚的解法从第 步开始出现错误,原分式方程正确的解应是 .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.
【详解】
解:延长PF交AB的延长线于点G.
在△BGF与△CPF中,
∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F为PG中点.
又∵由题可知,∠BEP=90°,
∴(直角三角形斜边上的中线等于斜边的一半),
∵(中点定义),
∴EF=PF,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,
∵四边形ABCD为菱形,
∴AB=BC,∠ABC=180°﹣∠A=70°,
∵E,F分别为AB,BC的中点,
∴BE=BF,
易证FE=FG,
∴∠FGE=∠FEG=55°,
∵AG∥CD,
∴∠FPC=∠EGF=55°
故选:D.
此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.
2、A
【解析】
由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
【详解】
由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,
则总人数为:5+15+10=30,
故该组数据的众数为14岁,中位数为:=14岁,
即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,
故选A.
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
3、C
【解析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.
【详解】
根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.
故选C
考点:函数的定义
4、C
【解析】
分式有意义,则分式的分母不为0,可得关于x的不等式,解不等式即得答案.
【详解】
解:要使分式有意义,则x+1≠0,解得,故选C.
本题考查了分式有意义的条件,属于基础题型,分式的分母不为0是分式有意义的前提条件.
5、C
【解析】
根据勾股数的定义:满足a2+b2=c2 的三个正整数,称为勾股数,据此判断即可.
【详解】
A.1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;
B.1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;
C.因为62+82=102,故是勾股数.故此选项正确;
D.因为52+62≠72,故不是勾股数,故此选项错误.
故选C.
本题考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合较小两边的平方和=最大边的平方.
6、D
【解析】
根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.
【详解】
解:函数中,所以其图象过一、三象限,函数中,所以其图象的两支分别位于第一、三象限,符合的为D选项.
故选D.
本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键.
7、A
【解析】
根据高线的定义即可得出结论.
【详解】
解:B,C,D都不是△ABC的边BC上的高,
故选:A.
本题考查的是作图−基本作图,熟知三角形高线的定义是解答此题的关键.
8、A
【解析】
根据被开方数非负得到不等式x-2≥0,求解即可得到答案.
【详解】
由二次根式有意义的条件,得x-2≥0,即x≥2,故选A.
此题考查函数自变量的取值范围,解题关键在于掌握运算法则.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.
【详解】
解:由直线a∥b∥c,根据平行线分线段成比例定理,
即可得,
又由AC=3,CE=5,DF=4
可得:
解得:BD=.
故答案为.
此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.
10、1
【解析】
先由平均数的公式计算出x的值,再根据方差的公式计算即可.
【详解】
解:∵数据6,x,1,3,4的平均数是4,
∴(6+x+1+3+4)÷5=4,
解得:x=5,
∴这组数据的方差是[(6-4)1+(5-4)1+(1-4)1+(3-4)1+(4-4))1]=1;
故答案为:1.
本题考查方差的定义与意义:一般地设n个数据,x1,x1,…xn的平均数和方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.
11、144米1.
【解析】
将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.
【详解】
解:将道路分别向左、向上平移,得到草地为一个长方形,
长方形的长为10-1=18(米),宽为10-1=8(米),
则草地面积为18×8=144米1.
故答案为:144米1.
本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.
12、.
【解析】
试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.
由题意得,函数的,故y的值随x的值增大而增大.
∵,∴.
考点:一次函数图象与系数的关系.
13、
【解析】
解:设方程的另一个根为n,
则有−2+n=−5,
解得:n=−3.
故答案为
本题考查一元二次方程的两根是,则
三、解答题(本大题共5个小题,共48分)
14、(1)一次函数,反比例,(2).
【解析】
(1)点C在反比例函数图象上,且△OCD的面积为3,并且图象在二、四象限,可求出的值,确定反比例函数的关系式,再确定点C的坐标,用A、C的坐标用待定系数法可确定一次函数的关系式, (2)利用一次函数的关系式可求出于坐标轴的交点坐标,与反比例函数关系式联立可求出F点坐标,利用对称可求出点E坐标,最后由三角形的面积公式求出结果.
【详解】
解:(1)∵点C在反比例函数图象上,且△OCD的面积为3,
∴ , ∴,
∵反比例函数的图象在二、四象限, ∴,
∴反比例函数的解析式为,
把C代入为: 得,, ∴C,
把A(0,4),C(3,-2)代入一次函数得:
,解得:, ∴一次函数的解析式为.
答:一次函数和反比例函数的解析式分别为:,.
(2)一次函数与轴的交点B(2,0).
∵点B关于y轴对称点E, ∴点E(-2,0), ∴BE=2+2=4,
一次函数和反比例函数的解析式联立得:,解得:
, ∴点,
∴.
答:△EFC的面积为1.
考查反比例函数的图象和性质、一次函数的图象和性质以及方程组、三角形的面积等知识,理解反比例函数、一次函数图象上点的坐标的特征,是解决问题的关键.
15、(1)3种;(2)W=,最大为1390元
【解析】
(1)设购进甲种羽毛球筒,根据题意可列出关于m的不等式组,则可求得m的取值范围,再由m为整数即可求得进货方案;
(2)用m表示出W,可得到W关于m的一次函数,再利用一次函数的性质即可求得答案.
【详解】
解:(1)设购进甲种羽毛球筒,则乙种羽毛球()筒,
由题意,得,
解得.
又∵是整数,
∴m=76,77,78共三种进货方案.
(2)由题意知,甲利润:元/筒,乙利润:元/筒,
∴
∵随增大而增大
∴当时,(元).
即利润的最大值是1390元.
本题考查了一元一次不等式组的应用和一次函数的应用,弄清题意列出不等式组和一次函数解析式是解题的关键.
16、﹣x1﹣x+1,﹣2
【解析】
先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【详解】
(﹣x﹣1)÷
=,
=,
=﹣(x﹣1)(x+1)
=﹣x1﹣x+1,
当x=1时,
原式=﹣2﹣1+1
=﹣2.
本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.
17、 (1)2﹣2;4;(2)y=x﹣1或y=x+.
【解析】
(1)由题意得出M=OA=2,m=2,即可得出O到线段AB的“极差距离”;由题意得出AK=3,BK=7,则M=BK=7,m=AK=3,即可得出结果;
(2)由题意得出点P的坐标为(8,0)或(﹣8,0),设直线AP的解析式为:y=kx+a,代入点A、点P的坐标即可得出解析式.
【详解】
解:(1)∵点A的坐标为(2,2),正方形ABCD的对角线交点恰与原点O重合,
∴OA=,
∴M=OA=2,m=2,
∴O到线段AB的“极差距离”D(O,AB)= ;
∵点K(5,2),如图1所示:
∴AK=3,BK=7,
∴M=BK=7,m=AK=3,
∴点K(5,2)到线段AB的“极差距离”D(K,AB)=4;
故答案为:2﹣2;4;
(2)设点P(x,0),
若点P在O的右侧,则M=BP,m=PN=2﹣x,BH=2,PH=x+2,如图2所示:
∵“极差距离”D(P,W)=2,
∴﹣(2﹣x)=2,
解得:x=,
同理,点P在O的左侧,x=,
∴点P的坐标为(,0)或(﹣,0),
设直线AP的解析式为:y=kx+a,
当点P的坐标为(,0)时,则:
,解得:,
∴此时,直线AP的解析式为y=x﹣1;
当点P的坐标为(﹣,0)时,则:
,解得:,
∴此时,直线AP的解析式为y=x+;
∴直线AP的解析式为:y=x﹣1或y=x+.
本题主要考查正方形的性质及待定系数法求一次函数的解析式,能够理解“极差距离”的意义,掌握待定系数法是解题的关键.
18、(1)m=75-2.5x;(2)y=-1900x+75000(0≤x≤30);(3)生产甲产品25吨时,公司获得的总利润最大,最大利润是27500元.
【解析】
(1)∵生产甲产品x吨,则用矿石原料10x吨.∴生产乙产品用矿石原料为(300-10x)吨,由此得出;
(2)先求出生产1吨甲、乙两种产品各获利多少,然后可求出获得的总利润.
(3)由于总利润y是x的一次函数,先求出x的取值范围,再根据一次函数的增减性,求得最大利润.
【详解】
(1)m与x之间的关系式为
(2)生产1吨甲产品获利:4600-4000=600
生产1吨乙产品获利:5500-4500=1000
y与x的函数表达式为:(0≤x≤30)
(3)根据题意列出不等式
解得x≥25
又∵0≤x≤30
∴25≤x≤30
∵y与x的函数表达式为:y=-1900x+75000
y随x的增大而减小,
∴当生产甲产品25吨时,公司获得的总利润最大
y最大=-1900×25+75000=27500(元).
本题考查的知识点是用函数的知识解决实际问题,解题关键是注意自变量的取值范围还必须使实际问题有意义.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为1.
故答案为1.
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
20、,
【解析】
此题根据题意可以确定max(2,2x-1),然后即可得到一个一元二次方程,解此方程即可求出方程的解.
【详解】
①当2x-1>2时,∵max(2,2x-1)=2,
∴xmax(2,2x-1)=2x,
∴2x=x+1
解得,x=1,此时2x-1>2不成立;
②当2x-1<2时,∵max(2,2x-1)=2x-1,
∴xmax(2,2x-1)=2x2-x,
∴2x2-x =x+1
解得,,.
故答案为:,.
本题立意新颖,借助新运算,实际考查解一元二次方程的解法.
21、(1,2)
【解析】
先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.
【详解】
∵AO= ,BO=2,
∴AB= ,
∴OA+AB1+B1C2=6,
∴B2的横坐标为:6,且B2C2=2,
∴B4的横坐标为:2×6=12,
∴点B2018的横坐标为:2018÷2×6=1.
∴点B2018的纵坐标为:2.
∴点B2018的坐标为:(1,2),
故答案是:(1,2).
考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.
22、1
【解析】
由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,
∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,
∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,
∴AO'=AC+O'C=6,
∴AB'=;
故答案为1.
此题考查菱形的性质,平移的性质,勾股定理,解题关键在于得到AO=OC=AC=2,OB=OD=BD=8.
23、 (2,2), y=
【解析】
分析:根据锐角三角函数即可求出点A的坐标,把点A坐标代入直线OA的解析式可直接求出其解析式.
详解:如图:过A点作x轴,y轴的垂线,交于点B,C.
∵OA=4,且∠AOC=30°,
∴AC=2,OC=2.
∴点A(2).
设直线OA的解析式为y=kx,
∵点A(2,2),
∴k=,
∴直线OA的解析式:y=x.
点睛:本题主要考查了锐角三角函数的定义,难点在于用待定系数法求正比例函数解析式.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
通过列出表格,画出函数图象即可.
【详解】
列表:
画出函数y=2x-1的图象.如图所示.
此题考查一次函数的图象,解题关键在于掌握其性质定义.
25、(1)b=3,m=1;(2)或
【解析】
(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;
(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
【详解】
解:(1)∵点P(1,b)在直线l1:y=2x+1上,
∴b=2×1+1=3;
∵点P(1,3)在直线l2:y=mx+4上,
∴3=m+4,
∴m=.
(2)当x=a时,yC=2a+1, yD=4a.
∵CD=2,
∴|2a+1(4a)|=2,
解得:a=或a=.
∴a的值为或.
本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据CD=2,找出关于a的含绝对值符号的一元一次方程.
26、(1);(2)一 ,
【解析】
(1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.
【详解】
解:(1)
=
=
=
=
(2)小刚的解法从第一步开始出现错误
解方程
解:方程两边乘,得
解得
检验:当时,.
所以,原分式方程的解是
故答案为:一 ,
本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.
题号
一
二
三
四
五
总分
得分
年龄(岁)
13
14
15
16
人数(人)
5
15
x
10-x
产品资源
甲
乙
矿石(吨)
10
4
煤(吨)
4
8
2024年山东省日照于里中学九上数学开学达标检测模拟试题【含答案】: 这是一份2024年山东省日照于里中学九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省济南市礼乐初级中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年山东省济南市礼乐初级中学数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省东营市利津县九上数学开学达标检测模拟试题【含答案】: 这是一份2024年山东省东营市利津县九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。