2025届山东省梁山县数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数的图象如图所示,当时,的取值范围是( )
A.B.C.D.
2、(4分)在▱ABCD中,∠A:∠B:∠C=1:2:1,则∠D等于( )
A.0°B.60°C.120°D.150°
3、(4分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点的坐标表示正确的是
A.(5,30)B.(8,10)C.(9,10)D.(10,10)
4、(4分)如图,AB∥CD,点E在BC上,且CD=CE,∠D=75°,则∠B的度数为( ).
A.75°B.40°C.30°D.15°
5、(4分)对于一次函数y=(3k+6)x﹣k,y随x的增大而减小,则k的取值范围是( )
A.k<0B.k<﹣2C.k>﹣2D.﹣2<k<0
6、(4分)若二次根式有意义,则x的取值范围是( )
A.x<2B.x≠2C.x≤2D.x≥2
7、(4分)下列各式正确的是( )
A.B.C.D.
8、(4分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是( )
A.x>2B.x<2C.x≥2D.x≤2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
10、(4分)若正比例函数,y随x的增大而减小,则m的值是_____.
11、(4分)已知一次函数,反比例函数(,,是常数,且),若其中-部分,的对应值如表,则不等式的解集是_________.
12、(4分)某种分子的半径大约是0.0000108mm,用科学记数法表示为______________.
13、(4分)如图,在平面直角坐标系中,△ABC与△A′B'C′关于点P位似且顶点都在格点上,则位似中心P的坐标是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:其中,
15、(8分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)
(1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:
(2)在(1)所画的平行四边形中任选-一个,求出其面积.
16、(8分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.
17、(10分)已知,一次函数y=(1-3k)x+2k-1,试回答:
(1)k为何值时,y随x的增大而减小?
(2)k为何值时,图像与y轴交点在x轴上方?
(3) 若一次函数y=(1-3k)x+2k-1经过点(3,4).请求出一次函数的表达式.
18、(10分)如图,的顶点坐标分别为,.
(1)画出关于点的中心对称图形;
(2)画出绕原点逆时针旋转的,直接写出点的坐标
(3)若内一点绕原点逆时针旋转的上对应点为,请写出的坐标.(用含,的式子表示).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算=__________.
20、(4分)直角三角形的两边长分别为3和5,则第三条边长是________.
21、(4分)如图,在菱形中,,菱形的面积为15,则菱形的对角线之和为__.
22、(4分) “折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为_____尺.
23、(4分)若直线l1:y1=k1x+b1经过点(0,3),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形中,,点在上,,,.
(1)求的度数;
(2)直接写出四边形的面积为 .
25、(10分)如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.
(1)求证:△AOE≌△COF;
(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由
26、(12分)分解因式:
(1)
(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题解析:从图像可以看出当自变量时,y的取值范围在x轴的下方,故
故选C.
2、C
【解析】
在□ABCD中,,,而且四边形内角和是,由此得到,.
【详解】
解:在□ABCD中,,
∴
又∵,
∴,.
故选:C.
本题主要考查四边形的内角和定理及平行四边形的性质,利用平行四边形的性质寻找各角之间的关系是解题的关键.
3、C
【解析】
先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.
【详解】
如图,
过点C作CD⊥y轴于D,
∴BD=5,CD=50÷2-16=9,
OA=OD-AD=40-30=10,
∴P(9,10);
故选C.
此题考查了坐标确定位置,根据题意确定出DC=9,AO=10是解本题的关键.
4、C
【解析】
根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.
【详解】
∵CD=CE,
∴∠D=∠DEC,
∵∠D=75°,
∴∠C=180°-75°×2=30°,
∵AB∥CD,
∴∠B=∠C=30°.
故选C.
此题考查的知识点是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C的度数.
5、B
【解析】
根据题意和一次函数的性质,当y随x的增大而减小时,3k+6<0,解之即可求解.
【详解】
∵一次函数y=(3k+6)x-k,函数值y随x的增大而减小,
∴3k+6<0,
解得:k<-2,
故选:B.
本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,掌握一次函数的增减性.
6、C
【解析】
二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.
【详解】
由题意得:1-x≥0,
解得:x≤1.
故选C.
本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.
7、D
【解析】
根据二次根式的性质解答即可.
【详解】
解:A. ,错误;
B. ,错误;
C. ,错误;
D. ,正确.故选D.
本题考查了二次根式的性质的应用,能根据二次根式的性质把根式化成最简二次根式是解题的关键.
8、B
【解析】
直接利用函数图象判断不等式kx+3>0的解集在x轴上方,进而得出结果.
【详解】
由一次函数图象可知
关于x的不等式kx+3>0的解集是x<2
故选B.
本题考查了一次函数的图象与性质和一元一次不等式及其解法,解题的关键是掌握一次函数与一元一次不等式之间的内在联系.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
分析:根据频率= 或频数=频率×数据总和解答.
详解:由题意,该组的人数为:400×0.25=1(人).
故答案为1.
点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.
10、﹣2
【解析】
根据正比例函数的定义及性质可得,且m-1<0,即可求出m的值.
【详解】
由题意可知:
,且m-1<0,
解得m=-2.
故答案为:-2.
本题考查了正比例函数定义及性质.当k<0时,函数值y随x的增大而减小;当k>0时,函数值y随x的增大而增大.
11、或
【解析】
根据表可求出反比例函数与一次函数的交点,然后根据交点及表格中对应的函数值即可求出等式的解集.
【详解】
根据表格可知,当x=-2和x=4时,两个函数值相等,
∴与的交点为(-2,-4),(4,2),
根据图表可知,要使,则或.
故答案为:或.
本题考查了反比例函数与一次函数交点问题,熟练掌握反比例函数与一次函数的性质是解答本题的关键.
12、1.08×10-5
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000108=1.08×10-5.
故答案为1.08×10-5.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
13、 (4,5)
【解析】
直接利用位似图形的性质得出对应点位置进而得出答案.
【详解】
解:如图所示:连接AA′,BB′,两者相交于点P,
∴位似中心P的坐标是(4,5).
故答案为:(4,5).
本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,然后利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.
【详解】
解:原式=
=
=
=,
把代入,得:原式=.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
15、(1)见解析;(2)见解析
【解析】
(1)根据平行四边形的性质即可得到结论;
(2)根据平行四边形的面积公式计算即可得到结论.
【详解】
解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;
(2)菱形DBFG面积=
=
=12
或平行四边形面积=
=15
本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
16、(1)见解析;(2)见解析.
【解析】
(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.
(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.
【详解】
(1)∵BE=CF,BF=BE+EF,CE=CF+EF,
∴BF=CE.
∵四边形ABCD是平行四边形,
∴AB=DC.
在△ABF和△DCE中,
∵AB=DC,BF=CE,AF=DE,
∴△ABF≌△DCE.
(2)∵△ABF≌△DCE,
∴∠B=∠C.
∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠B+∠C=180°.
∴∠B=∠C=90°.
∴平行四边形ABCD是矩形.
17、(1);(2);(3)
【解析】
(1)根据一次函数的性质可得出1﹣3k<0,解之即可得出结论;
(2)根据一次函数图象与系数的关系结合一次函数的定义可得出关于k的一元一次不等式组,解之即可得出结论;
(3)把点(3,4)代入一次函数,解方程即可.
【详解】
(1)∵一次函数y=(1-3k)x+2k-1中y随x的增大而减小,
∴1-3k<0,
解得:,
∴当时,y随x的增大而减小.
(2)∵一次函数y=(1-3k)x+2k-1的图象与y轴交点在x轴上方,
∴,
解得:k>,
∴当k>时,一次函数图象与y轴交点在x轴上方.
(3)∵一次函数y=(1-3k)x+2k-1经过点(3,4),
∴4=3×(1-3k)+2k-1,∴k=-,
一次函数的表达式为:.
本题考查了一次函数的性质、一次函数的定义以及一次函数图象与系数的关系,解题的关键是:(1)根据一次函数的性质找出1﹣3k<0;(2)根据一次函数图象与系数的关系结合一次函数的定义找出关于k的一元一次不等式组.
18、(1)见解析;(2),见解析;(3).
【解析】
(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到点C2的坐标;
(3)利用(2)中对应点的规律写出Q的坐标.
【详解】
解:(1)如图,为所作;
(2)如图,为所作,点的坐标为;
(3)若内一点绕原点逆时针旋转的对应点为,则的坐标为.
故答案为:(1)见解析;(2),见解析;(3).
本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分析:先把各根式化简,然后进行合并即可得到结果.
详解:原式=
=
点睛:本题主要考查二次根式的加减,比较简单.
20、4或
【解析】
由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.
【详解】
∵直角三角形的两边长分别为3和5,
∴①当5是此直角三角形的斜边时,设另一直角边为x,则x==4;
②当5是此直角三角形的直角边时,设另一直角边为x,则x==,
综上所述,第三边的长为4或,
故答案为:4或.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.注意分类讨论思想的运用.
21、
【解析】
由菱形的性质得出,,,由勾股定理和良宵美景得出OA2+OB2=16①,2OB×OB=15②,①+②得:(OA+OB)2=31,即可得出结果.
【详解】
解:四边形是菱形,
,,,
,菱形的面积为15,
①,,
②,
①②得:,
,
;
故答案为:.
本题考查了菱形的性质、勾股定理、完全平方公式;熟练掌握菱形的性质是解题的关键.
22、4.1.
【解析】
根据题意结合勾股定理得出折断处离地面的长度即可.
【详解】
解:
设折断处离地面的高度OA是x尺,根据题意可得:
x1+41=(10﹣x)1,
解得:x=4.1,
答:折断处离地面的高度OA是4.1尺.
故答案为:4.1.
本题主要考查了勾股定理的应用,在本题中理解题意,知道柱子折断后刚好构成一个直角三角形是解题的关键.
23、x<
【解析】
根据对称的性质得出关于x轴对称的对称点的坐标,再根据待定系数法确定函数关系式y1=k1x+b1,同理得到y2=k2x+b2,然后求出不等式的解集即可.
【详解】
依题意得:直线l1:y1=k1x+b1经过点(0,1),(1,-1),则.
解得.
故直线l1:y1=x+1.
同理,直线l2:y2=x-1.
由k1x+b1>k2x+b2得到:x+1>x-1.
解得x<.
故答案是:x<.
此题主要考查了一次函数与一元一次不等式,一次函数图象与几何变换,根据题意求出直线解析式是解题的关键所在.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)四边形的面积为.
【解析】
(1)连接AE,得出△ABE是等腰直角三角形,得出∠AEB=45°,,在△ADE中,,得出∠AED=90°,即可得出结果;(2)证出△CDE是等腰直角三角形,得出,BC=BE+CE=3,证明四边形ABCD是直角梯形,由梯形面积公式即可得出结果.
【详解】
(1)连接,如图所示:
,,
,,
在中,,,
,
,
;
(2),,
是等腰直角三角形,
,
,
,
,
,
四边形是直角梯形,
四边形的面积;
故答案为.
本题考查了勾股逆定理,等腰直角三角形,直角梯形的面积,掌握勾股逆定理,等腰直角三角形的性质是解题的关键.
25、(1)详见解析;(2)是菱形;
【解析】
根据菱形判定定理:对角线互相垂直且平分的四边形是菱形
【详解】
(1) 证明:∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠EAO=∠FCO,
∵O是OA的中点,
∴OA=OC,
在△AOE和△COF中,∠EAO=∠FCO OA=OC ∠AOE=∠COF ,
∴△AOE≌△COF(ASA);
(2) EF⊥AC时,四边形AFCE是菱形;
由(1)中△AOE≌△COF,得
AE=CF,OE=OF,
又∵OA=OC,EF⊥AC
∴四边形AFCE是菱形.
此题主要考查全等三角形的判定和菱形判定定理,熟练能掌握即可轻松解题.
26、(1);(2).
【解析】
(1)原式提取公因式,再利用完全平方公式分解即可;
(2)原式变形后,提取公因式即可.
【详解】
解:(1)原式;
(2)原式.
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2025届山东省济宁市梁山县数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2025届山东省济宁市梁山县数学九上开学质量跟踪监视模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届江西婺源县数学九上开学达标检测模拟试题【含答案】: 这是一份2025届江西婺源县数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省日照于里中学九上数学开学达标检测模拟试题【含答案】: 这是一份2024年山东省日照于里中学九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。