![2024年广西贵港市覃塘区九上数学开学达标检测模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16203309/0-1727588471219/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广西贵港市覃塘区九上数学开学达标检测模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16203309/0-1727588471268/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年广西贵港市覃塘区九上数学开学达标检测模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16203309/0-1727588471289/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年广西贵港市覃塘区九上数学开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,直线与反比例函数的图象交于,两点.若点的坐标是,则点的坐标是( )
A.B.C.D.
2、(4分)如图,△ABC的周长为28,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为( )
A.1B.2C.3D.4
3、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
4、(4分)若方程有增根,则m的值为( )
A.2B.4C.3D.-3
5、(4分)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )
A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点
C.当乙摩托车到达A地时,甲摩托车距离A地kmD.经过小时两摩托车相遇
6、(4分)在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是( )
A.测量对角线是否平分B.测量两组对边是否分别相等
C.测量其中三个角是否是直角D.测量对角线是否相等
7、(4分)﹣2018的倒数是( )
A.2018B.C.﹣2018D.
8、(4分)如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为( )
A.32B.16C.8D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(1,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=1;④不等式kx+b>0的解集是x>1.其中说法正确的有_________(把你认为说法正确的序号都填上).
10、(4分)化简+的结果是________.
11、(4分)如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.
12、(4分)某物体对地面的压强随物体与地面的接触面积之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为,那么该物体对地面的压强是__________.
13、(4分)在 中,若是 的正比例函数,则常数 _____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根
据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
15、(8分)先化简,再求值: ,其中.
16、(8分)定义:对于给定的一次函数y=ax+b(a≠0),把形如的函数称为一次函数y=ax+b(a≠0)的衍生函数.已知矩形ABCD的顶点坐标分别为A(1,0),B(1,2),C(-3,2),D(-3,0).
(1)已知函数y=2x+l.
①若点P(-1,m)在这个一次函数的衍生函数图像上,则m= .
②这个一次函数的衍生函数图像与矩形ABCD的边的交点坐标分别为 .
(2)当函数y=kx-3(k>0)的衍生函数的图象与矩形ABCD有2个交点时,k的取值范围是 .
17、(10分)边长为,的矩形发生形变后成为边长为,的平行四边形,如图1,平行四边形中,,边上的高为,我们把与的比值叫做这个平行四边形的“形变比”.
(1)若形变后是菱形(如图2),则形变前是什么图形?
(2)若图2中菱形的“形变比”为,求菱形形变前后的面积之比;
(3)当边长为3,4的矩形变后成为一个内角是30°的平行四边形时,求这个平行四边形的“形变比”.
18、(10分)如图,在平面直角坐标系中,一次函数图像经过点,且与轴相交于点,与正比例函数的图像相交于点,点的横坐标为.
(1)求的值;
(2)请直接写出不等式的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)根据指令,机器人在平面上能完成下列动作:先原地逆时针旋转角度,再朝其面对的方向沿直线行走距离,现机器人在平面直角坐标系的坐标原点,且面对轴正方向.请你给机器人下一个指令__________,使其移动到点.
20、(4分)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn,则Sn的值为__(用含n的代数式表示,n为正整数).
21、(4分)分解因式:__________.
22、(4分)在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的动点,则PE和PA的长度之和最小值为___________.
23、(4分)已知关于x的不等式3x - m+1>0的最小整数解为2,则实数m的取值范围是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知点,分别是平行四边形的边,上的中点,且∠=90°.
(1)求证:四边形是菱形;
(2)若=4,=5,求菱形的面积.
25、(10分)如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE= .
26、(12分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
求出函数关系式,联立组成方程组求出方程组的解即可,也可以直接利用对称性直接得出点A的坐标.
【详解】
把点B(3,5)代入直线y=ax(a≠0)和反比例函数y=得:a=,k=15,
∴直线y=x,与反比例函数y=,
,解得:,
∴A(-3,-5)
故选:A.
考查一次函数和反比例函数的交点坐标的求法,常规求法是先求出各自的函数关系式,联立方程组求解即可,也可以直接根据函数图象的对称性得出答案.
2、B
【解析】
根据已知条件证明△AQB≌△EQB及△APC≌△DPC,再得出PQ是△ADE的中位线,根据题中数据,根据DE=BE+CD-BC求出DE的长度,最后由中位线的性质即可求出PQ的长度.
【详解】
解:∵BQ平分∠ABC,
∴∠ABQ=∠EBQ,
∵BQ⊥AE,
∴∠AQB=∠EQB=90°,
在△AQB与△EQB中
∴△AQB≌△EQB(ASA)
∴AQ=EQ,AB=BE
同理可得:△APC≌△DPC(ASA)
∴AP=DP,AC=DC,
∴P,Q分别为AD,AE的中点,
∴PQ是△ADE的中位线,
∴PQ=,
∵△ABC的周长为28,BC=12,
∴AB+AC=28-12=16,即BE+CD=16,
∴DE=BE+CD-BC=16-12=4
∴PQ=2
故答案为:B.
本题主要考查了中位线的性质,涉及全等三角形的判定及三角形周长计算的问题,解题的关键是根据全等三角形的性质得出中位线.
3、D
【解析】
根据轴对称图形和中心对称图形的概念识别即可.(轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形是指在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合.)
【详解】
解:A 选项不是轴对称图形,是中心对称图形;
B 选项是轴对称图形,不是中心对称图形;
C 选项是轴对称图形,不是中心对称图形;
D 选项既是轴对称图形,又是中心对称图形,
故选D.
本题主要考查轴对称图形和中心对称图形的识别,这是重点知识,必须熟练掌握,关键在于根据概念判断.
4、D
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x−1)=0,得到x=1,然后代入化为整式方程的方程算出m的值.
【详解】
方程两边都乘(x−1),
得x=2(x−1)-m,
∵原方程有增根,
∴最简公分母(x−1)=0,
解得x=1,
当x=1时,1=2(1−1)-m
m=-1.
故选:D.
本题考查了分式方程的增根,增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
5、C
【解析】
根据乙用时间比甲用的时间少可知乙摩托车的速度较快;根据甲0.6小时到达B地判定B正确;设两车相遇的时间为t,根据相遇问题列出方程求解即可;根据乙摩托车到达A地时,甲摩托车行驶了0.5小时,计算即可得解.
【详解】
A. 由图可知,甲行驶完全程需要0.6小时,乙行驶完全程需要0.5小,所以,乙摩托车的速度较快正确,故A项正确;
B. 因为甲摩托车行驶完全程需要0.6小时,所以经过0.3小时甲摩托车行驶到A,B两地的中点正确,故B项正确;
C. 当乙摩托车到达A地时,甲摩托车距离A地: km正确,故C项错误;
D. 设两车相遇的时间为t,根据题意得,,t= ,故D选正确.
故选:C.
本题考查了一次函数的实际应用.
6、C
【解析】
分析:根据矩形的判定方法逐项分析即可.
详解:A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;
B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;
C、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;
D、根据对角线相等不能得出四边形是矩形,故本选项错误;
故选C.
点睛:本题考查了矩形的判定方法的实际应用,熟练掌握矩形的判定方法是解答本题的关键.矩形的判定方法有:①有一个角的直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形.
7、D
【解析】
根据倒数的概念解答即可.
【详解】
﹣2018的倒数是:﹣.
故选D.
本题考查了倒数的知识点,解题的关键是掌握互为倒数的两个数的乘积为1.
8、C
【解析】
根据等腰三角形的性质和中位线的性质求解即可.
【详解】
∵AD=AC
∴是等腰三角形
∵AE⊥CD
∴
∴E是CD的中点
∵F是BC的中点
∴EF是△BCD的中位线
∴
故答案为:C.
本题考查了三角形的线段长问题,掌握等腰三角形的性质和中位线的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①②③
【解析】
①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确;
②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确;
③因为一次函数的图象与x轴的交点为(1,0),所以当y=0时,x=1,即关于x的方程kx+b=0的解为x=1,故本项正确;
④由图象可得不等式kx+b>0的解集是x<1,故本项是错误的.故正确的有①②③.
10、1
【解析】
找到公分母x-3,再利用同分母相加减法则即可求解.
【详解】
+=-==1
本题考查了分式的化简,属于简单题,找到公分母是解题关键.
11、1.
【解析】
由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;
【详解】
∵四边形ABCD是平行四边形,
∴∠ABC=∠D=50°,AD∥BC,
由作图可知,BE平分∠ABC,
∴∠EBC=∠ABC=1°,
∴∠AEB=∠EBC=1°,
故答案为1.
本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
12、500
【解析】
首先通过反比例函数的定义计算出比例系数k的值,然后可确定其表达式,再根据题目中给出的自变量求出函数值
【详解】
根据图象可得
当S=0.24时,P= =500,即压强是500Pa.
此题考查反比例函数的应用,列方程是解题关键
13、2
【解析】
试题分析:本题主要考查的就是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a﹣2=0,解出即可.
考点:正比例函数的定义.
三、解答题(本大题共5个小题,共48分)
14、解:(1)1.
(2) 40;2.
(3)3.
(4)学校购买其他类读物900册比较合理.
【解析】
(1)∵从条形图得出文学类人数为:70,从扇形图得出文学类所占百分比为:35%,
∴本次调查中,一共调查了:70÷35%=1人.
(2)∵从扇形图得出科普类所占百分比为:30%,
∴科普类人数为:n=1×30%=2人, 艺术类人数为:m=1﹣70﹣30﹣2=40人.
(3)根据艺术类读物所在扇形的圆心角是:40÷1×32°=3°.
(4)根据喜欢其他类读物人数所占的百分比为 ,
则200册中其他读物的数量: (本).
15、
【解析】
根据分式的运算法则即可进行化简求值.
【详解】
原式===
当x=时,原式= =
此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
16、(1)①1,②(,2)或(,,0);(2)1<k<1;
【解析】
(1)①x=-1<0,则m=-2×(-1)+1=1,即可求解;②一次函数的衍生函数图象与矩形ABCD的边的交点位置在BC和AD上,即可求解;
(2)当直线在位置①时,函数和矩形有1个交点,当直线在位置②时,函数和图象有1个交点,在图①②之间的位置,直线与矩形有2个交点,即可求解.
【详解】
解:(1)①x=-1<0,则m=-2×(-1)+1=1,
故答案为:1;
②一次函数的衍生函数图象与矩形ABCD的边的交点位置在BC和AD上,
当y=2时,2x+1=2,解得:x=,
当y=0时,2x+1=0,解得:x=,
故答案为:(,2)或(,,0);
(2)函数可以表示为:y=|k|x-1,
如图所示当直线在位置①时,函数和矩形有1个交点,
当x=1时,y=|k|x-1=1|k|-1=0,k=±1,
k>0,取k=1
当直线在位置②时,函数和图象有1个交点,
同理k=1,
故在图①②之间的位置,直线与矩形有2个交点,
即:1<k<1.
本题为一次函数综合题,涉及到新定义、直线与图象的交点等,其中(2),要注意分类求解,避免遗漏.
17、(1)正方形;(2);(3)或.
【解析】
(1)根据形变后的图形为菱形,即可推断.
(2)由题意得形变比,再分别用代数式表示形变前和形变后的面积,计算比值即可.
(3)分以AB为底边和以AD为底边两种情况讨论,可求这个平行四边形的“形变比”.
【详解】
(1)∵形变后是菱形
∴AB=BC=CD=DA
则形变前的四条边也相等
∵四条边相等的矩形是正方形
∴形变前的图形是正方形
(2)根据题意知道:
S形变前=a×b=a2
S形变后=a×h=a××a=a2
∴
(3)当形变后四边形一个内角为30°时
此时应分两种情况讨论:
第一种:以AB为底边4×=2
∴这个四边形的形变比为:
第二种:以AD为底边
则
∴这个四边形的形变比为:.
本题考查了正方形、菱形的性质,正方形的面积和菱形的面积的求法,还利用了同底等高的三角形的面积相等,同时还训练了学生的理解能力,以及对新定义的理解和运用.
18、(1);(2)
【解析】
根据题意先求得点C的坐标,再将点A、C代入即可解答.
由,得,根据点C的坐标为(1,3)即可得出答案.
【详解】
解:(1)当时,,
点的坐标为.
将代入,
得:
解得:;
(2)由,得,
点的横坐标为,;
本题考查一次函数,熟练掌握运算法则是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 [3,135°].
【解析】
解决本题要根据旋转的性质,构造直角三角形来解决.
【详解】
解:如图所示,设此点为C,属于第二象限的点,过C作CD⊥x轴于点D,
那么OD=DC=3,
∴∠COD=45°,OC=OD÷cs45°=,
则∠AOC=180°−45°=135°,
那么指令为:[,135°]
故答案为:[,135°]
本题考查求新定义下的点的旋转坐标;应理解运动指令的含义,构造直角三角形求解.
20、.
【解析】
试题分析:∵直线,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴=,
∵A2B1=A1B1=1,∴A2C1=2=,∴=,
同理得:A3C2=4=,…,=,
∴=,
故答案为.
考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型.
21、
【解析】
先提取a,再根据平方差公式即可因式分解.
【详解】
故填:.
此题主要考查因式分解,解题的关键是熟知公式法与提取公因式法因式分解.
22、
【解析】
利用轴对称最短路径求法,得出A点关于BD的对称点为C点,再利用连接EC交BD于点P即为最短路径位置,利用勾股定理求出即可.
【详解】
解:连接AC,EC,EC与BD交于点P,此时PA+PE的最小,即PA+PE就是CE的长度
∵正方形ABCD中,BE=2,AE=1,
∴BC=AB=3,
∴CE= == ,
故答案为.
本题考查利用轴对称求最短路径问题以及正方形的性质和勾股定理,利用正方形性质得出A,C关于BD对称是解题关键.
23、
【解析】
先用含m的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m的取值范围.
【详解】
∵3x - m+1>0,
∴3x> m-1,
∴x>,
∵不等式3x - m+1>0的最小整数解为2,
∴1≤<3,
解之得
.
故答案为:.
本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m的不等式是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)10.
【解析】
(1)由平行四边形的性质可得BC=AD,BC∥AD,由中点的性质可得EC=AF,可证四边形AECF为平行四边形,由直角三角形的性质可得AE=EC,即可得结论;
(2)可求S△ABC=AB×AC=10,即可求菱形AECF的面积.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵点,分别是边,上的中点
∴AF∥EC ,AF=EC
∴四边形AECF是平行四边形.
在Rt△ABC中,∠BAC=90°,点E是BC边的中点,
∴AE =BC=CE
∴平行四边形AECF是菱形.
(2)∵∠BAC=90°,AB=5,AC=4,
∴S△ABC=AB×AC=10
∵点E是BC的中点,
∴S△AEC=S△ABC=5
∵四边形AECF是菱形
∴四边形AECF的面积=2S△AEC=10.
本题考查了菱形的判定和性质,直角三角形的性质,三角形的面积公式,熟练运用菱形的判定是本题的关键.
25、(1)见解析;(2)1.
【解析】
根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.
【详解】
(1)如图所示:E点即为所求.
(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,
∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.
考点:作图—复杂作图;平行四边形的性质
26、证明见解析
【解析】
证明:连接BD,交AC于点O,根据四边形ABCD是平行四边形,得到OA=OC,OB=OD, 由此推出OE=OF,利用对角线互相平分的四边形是平行四边形即可得到结论.
【详解】
连接BD,交AC于点O,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OA﹣AE=OC﹣CF,
即OE=OF,
∵OE=OF,OB=OD
∴四边形DEBF是平行四边形.
此题考查平行四边形的性质及判定,熟记判定定理及性质定理是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024年广西贵港市覃塘区数学九上开学调研试题【含答案】: 这是一份2024年广西贵港市覃塘区数学九上开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西防城港市九上数学开学质量检测试题【含答案】: 这是一份2024年广西防城港市九上数学开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省连云港市海州区数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年江苏省连云港市海州区数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。