2024年江苏省盐城市新洋第二实验学校数学九年级第一学期开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在比例尺为1∶5 000的地图上,量得甲、乙两地的距离为25 cm,则甲、乙两地间的实际距离是( )
A.1 250 kmB.125 kmC.12.5 kmD.1.25 km
2、(4分)下列方程中,判断中错误的是( )
A.方程是分式方程B.方程是二元二次方程
C.方程是无理方程D.方程是一元二次方程
3、(4分)下列事件是必然事件的是( )
A.乘坐公共汽车恰好有空座B.同位角相等
C.打开手机就有未接电话D.三角形内角和等于180°
4、(4分)菱形具有而矩形不一定具有的性质是( )
A.对角相等B.四条边都相等
C.邻角互补D.对角线互相平分
5、(4分)下列计算中,正确的是( )
A.B.
C.D.
6、(4分)如图,□ABCD的对角线相交于点O,下列式子不一定正确的是( )
A.AC=BDB.AB=CDC.∠BAD=∠BCDD.AO=CO
7、(4分)设正比例函数的图象经过点,且的值随x值的增大而减小,则( )
A.2B.-2C.4D.-4
8、(4分)点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,延长正方形的边到,使,则________度.
10、(4分)一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚,若梯子的顶端下滑,则梯足将滑动______.
11、(4分)若是完全平方式,则的值是__________.
12、(4分)某种型号的空调经过两次降价,价格比原来下降了36%,则平均每次下降的百分数是_____%.
13、(4分)如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点.若AB=4,BC=3,则AE+EF的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.
15、(8分)某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本。
(1)请求出每本笔记本的原来标价;
(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入多少本笔记本?
16、(8分)如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点E,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.
17、(10分)分解因式:
(1). (2).
18、(10分)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知实数a、b在数轴上的位置如图所示,则化简的结果为________
20、(4分)如图,一根旗杆在离地面5 m处断裂,旗杆顶部落在离旗杆底部12 m处,旗杆断裂之前的高为____.
21、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.
22、(4分)如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.
23、(4分)若直线和直线的交点在第三象限,则m的取值范围是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)解下列各题:
(1)分解因式:;
(2)已知,,求的值.
25、(10分).
26、(12分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:比例尺的定义:比例尺=图上距离∶实际距离.
由题意得甲、乙两地的实际距离,故选D.
考点:比例尺的定义
点评:本题属于基础应用题,只需学生熟练掌握比例尺的定义,即可完成.
2、C
【解析】
逐一进行判断即可.
【详解】
A. 方程是分式方程,正确,故该选项不符合题意;
B. 方程是二元二次方程,正确,故该选项不符合题意;
C. 方程是一元二次方程,错误,故该选项符合题意;
D. 方程是一元二次方程,正确,故该选项不符合题意;
故选:C.
本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.
3、D
【解析】
A.乘坐公共汽车恰好有空座,是随机事件;B.同位角相等,是随机事件;C.打开手机就有未接电话,是随机事件;D.三角形内角和等于180°,是必然事件,
故选D.
4、B
【解析】
根据菱形和矩形的性质,容易得出结论.
【详解】
解:菱形的性质有:四条边都相等,对边平行且相等;对角相等,邻角互补;对角线互相垂直平分;
矩形的性质有:对边平行且相等;四个角都是直角;对角线互相平分;
根据菱形和矩形的性质得出:菱形具有而矩形不一定具有的性质是四条边都相等;
故选:B.
本题考查了菱形和矩形的性质;熟练掌握菱形和矩形的性质是解决问题的关键.
5、D
【解析】
解:A,B,C都不是同类二次根式,不能合并,故错误;
D.3﹣=(3﹣=,正确.
故选D.
6、A
【解析】
根据平行四边形的性质逐项判断即可得.
【详解】
A、平行四边形的对角线不一定相等,则不一定正确,此项符合题意
B、平行四边形的两组对边分别相等,则一定正确,此项不符题意
C、平行四边形的两组对角分别相等,则一定正确,此项不符题意
D、平行四边形的两对角线互相平分,则一定正确,此项不符题意
故选:A.
本题考查了平行四边形的性质,熟记平行四边形的性质是解题关键.
7、B
【解析】
先把点带入得,解得m=,再根据正比例函数的增减性判断m的值.
【详解】
因为的值随x值的增大而减小,所以m<0即m=-1.
故选B.
考点:曲线上的点与方程、正比例函数的性质.
8、D
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
【详解】
∵反比例函数y=中,k=1>0,
∴此函数图象的两个分支在一、三象限,
∵x1<x2<0<x1,
∴A、B在第三象限,点C在第一象限,
∴y1<0,y2<0,y1>0,
∵在第三象限y随x的增大而减小,
∴y1>y2,
∴y2<y1<y1.
故选D.
本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、22.5
【解析】
连接BD,根据等边对等角及正方形的性质即可求得∠E的度数.
【详解】
连接BD,如图所示:
则BD=AC
∵BE=AC
∴BE=BD
∴∠E=(180°-90°-45)°=22.5°.
故答案是:.
考查到正方形对角线相等的性质.
10、
【解析】
根据条件作出示意图,根据勾股定理求解即可.
【详解】
解:由题意可画图如下:
在直角三角形ABO中,根据勾股定理可得,,
如果梯子的顶度端下滑1米,则.
在直角三角形中,根据勾股定理得到:,
则梯子滑动的距离就是.
故答案为:1m.
本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键.
11、
【解析】
根据完全平方公式即可求解.
【详解】
∵是完全平方式,
故k=
此题主要考查完全平方式,解题的关键是熟知完全平方公式的特点.
12、20%.
【解析】
增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题求解.设平均每次下降的百分数是x,则根据题意可列方程(1-x)2=1-36%,解方程即可求解.注意根据实际意义进行值的取舍.
【详解】
设平均每次下降的百分数是x,根据题意得(1-x)2=1-36%
解方程得x1=0.2=20%,x2=1.8(舍去)
所以平均每次下降的百分数是20%.
故答案是:20%.
考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).
13、1
【解析】
先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果.
【详解】
解:∵点E,F分别是的中点,
∴FE是△BCD的中位线,
.
又∵E是BD的中点,
∴Rt△ABD中,,
故答案为1.
本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
根据三角形中位线定理得到,EF∥AC,,GH∥AC,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明结论.
【详解】
证明:、分别是、的中点
是的中位线
同理:
四边形是平行四边形
本题考查的是三角形中位线定理、平行四边形的判定,掌握三角形中位线定理是解题的关键.
15、(1)4元;(2)112本.
【解析】
(1)根据打折后购买的数量比打折前多10本,进而列出方程求出答案;
(2)先求出打8折后的标价,再根据数量=总价÷单价,列式计算即可求解.
【详解】
解:(1)设笔记本打折前售价为元,则打折后售价为元,
由题意得:,
解得:,
经检验,是原方程的根.
答:打折前每本笔记本的售价是4元;
(2)购入笔记本的数量为:(元).
故该校最多可购入112本笔记本.
此题主要考查了分式方程的应用,正确得出等量关系是解题关键.
16、证明见解析.
【解析】
根据三角形中位线定理和平行四边形的判定定理即可得到结论.
【详解】
证明:∵AD是△ABC边BC上的中线,F是BE的中点,
∴BF=EF,BD=CD,
∴DF∥CE,
∴AD∥CE,
∵AE∥BC,
∴四边形ADCE是平行四边形.
本题考查了三角形的中位线定理,平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.
17、(1);(2)
【解析】
(1)首先提取公因式2,进而利用完全平方公式分解因式即可.
(2)先用平方差公式分解,再化简即可.
【详解】
解:(1)原式;
(2)原式
.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,注意分解要彻底.
18、见解析
【解析】
解:结论:四边形ABCD是平行四边形
证明:∵DF∥BE
∴∠AFD=∠CEB
又∵AF=CE DF=BE,
∴△AFD≌△CEB(SAS)
∴AD=CB ∠DAF=∠BCE
∴AD∥CB
∴四边形ABCD是平行四边形
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0
【解析】
根据数轴所示,a<0,b>0, b-a>0,依据开方运算的性质,即可求解.
【详解】
解:由图可知:a<0,b>0, b-a>0,
∴
故填:0
本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a>0,即|b-a|=b-a.
20、18m
【解析】
旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,
所以折断的旗杆与地面形成了一个直角三角形.
根据勾股定理,折断的旗杆为=13m,
所以旗杆折断之前高度为13m+5m=18m.
故答案为18m.
21、或或
【解析】
由已知得出∠B=60°,AB=2BC=18,①当∠BQP=90°时,则∠BPQ=30°,BP=2BQ,得出18-3t=2t,解得t=;②当∠QPB=90°时,则∠BQP=30°,BQ=2BP,若0<t<6时,则t=2(18-3t),解得t=,若6<t≤9时,则t=2(3t-18),解得t=.
【详解】
解:∵∠C=90°,∠A=30°,BC=9,
∴∠B=60°,AB=2BC=18,
①当∠BQP=90°时,如图1所示:则AC∥PQ,
∴∠BPQ=30°,BP=2BQ,
∵BP=18-3t,BQ=t,
∴18-3t=2t,
解得:t=;
②当∠QPB=90°时,如图2所示:
∵∠B=60°,
∴∠BQP=30°,
∴BQ=2BP,
若0<t<6时,
则t=2(18-3t),
解得:t=,
若6<t≤9时,
则t=2(3t-18),
解得:t=;
故答案为:或或.
本题考查了含30°角直角三角形的判定与性质、平行线的判定与性质等知识,熟练掌握含30°角直角三角形的性质是解题的关键.
22、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA
【解析】
根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;
根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;
根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.
故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.
23、m<−1.
【解析】
首先把y=2x-1和y=m-x,组成方程组,求解,x和y的值都用m来表示,根据题意交点坐标在第三象限表明x、y都小于0,即可求得m的取值范围.
【详解】
∵ ,
∴解方程组得: ,
∵直线y=2x−1和直线y=m−x的交点在第三象限,
∴x<0,y<0,
∴m<−1,m<0.5,
∴m<−1.
故答案为:m<−1.
此题考查两条直线相交或平行问题,解题关键在于用m来表示x,y的值.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)-12
【解析】
(1)都含有因数 ,利用提取公因式法即可解答
(2)先提取公因式xy,再根据完全平方公式进行二次分解,然后代入数据计算即可得解.
【详解】
解:(1)
.
(2)∵,,
∴
,
,
.
本题考查因式分解,熟练掌握运算法则是解题关键.
25、
【解析】
先根据平方差和完全平方公式化简,再进行加减运算即可.
【详解】
解:原式=
=
=
本题是对二次根式混合运算的考查,熟练掌握平方差和完全平方公式是解决本题的关键.
26、2.
【解析】
根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
【详解】
解:∵AD是△ABC的中线,且BC=10,
∴BD=BC=1.
∵12+122=22,即BD2+AD2=AB2,
∴△ABD是直角三角形,则AD⊥BC,
又∵CD=BD,
∴AC=AB=2.
本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.
题号
一
二
三
四
五
总分
得分
2024年江苏省盐城市中学九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024年江苏省盐城市中学九年级数学第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省盐城市毓龙路实验学校数学九上开学达标检测模拟试题【含答案】: 这是一份2024年江苏省盐城市毓龙路实验学校数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省盐城市洋马初级中学九上数学开学联考试题【含答案】: 这是一份2024年江苏省盐城市洋马初级中学九上数学开学联考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。