![2024年湖北省省直辖县九年级数学第一学期开学考试模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16206254/0-1727675132755/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年湖北省省直辖县九年级数学第一学期开学考试模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16206254/0-1727675132844/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年湖北省省直辖县九年级数学第一学期开学考试模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16206254/0-1727675132867/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年湖北省省直辖县九年级数学第一学期开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,直线与双曲线交于、两点,过点作轴,垂足为,连接,若,则的值是( )
A.2B.4C.-2D.-4
2、(4分)矩形 ABCD中,O为 AC 的中点,过点O的直线分别与AB,CD交于点E,F,连接 BF交AC于点M连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①△AOE≌△COF;②△EOB≌△CMB;③FB⊥OC,OM=CM;④四边形 EBFD 是菱形;⑤MB:OE=3:2其中正确结论的个数是( )
A.5B.4C.3D.2
3、(4分)下列事件中,属于随机事件的是( )
A.抛出的篮球往下落B.在只有白球的袋子里摸出一个红球
C.购买张彩票,中一等奖D.地球绕太阳公转
4、(4分)以三角形三边中点和三角形三个顶点能画出平行四边形有( )个.
A.1B.2C.3D.4
5、(4分)如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是( )
A.△ABD≌△ECD
B.连接BE,四边形ABEC为平行四边形
C.DA=DE
D.CE=CA
6、(4分)已知y=(k-3)x|k|-2+2是一次函数,那么k的值为( )
A.B.3C.D.无法确定
7、(4分)下列各式:中,是分式的有( )
A.1个B.2个C.3个D.4个
8、(4分)小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8
9、(4分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.
10、(4分)一元二次方程的根是_____________
11、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________。
12、(4分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.
13、(4分)在菱形中,在菱形所在平面内,以对角线为底边作顶角是的等腰则_________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读理解:
定义:有三个内角相等的四边形叫“和谐四边形”.
(1)在“和谐四边形”中,若,则 ;
(2)如图,折叠平行四边形纸片,使顶点,分别落在边,上的点,处,折痕分别为,.
求证:四边形是“和谐四边形”.
15、(8分)如图,在平行四边形ABCD中,BE平分∠ABC交CD的延长线于点E,作CF⊥BE于F.
(1)求证:BF=EF;
(2)若AB=8,DE=4,求平行四边形ABCD的周长.
16、(8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,AB边交y轴于点H,OC=4,∠BCO=60°.
(1)求点A的坐标
(2)动点P从点A出发,沿折线A﹣B一C的方向以2个单位长度秒的速度向终点C匀速运动,设△POC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,直接写出当t为何值时△POC为直角三角形.
17、(10分)问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:
问题解决
(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.
18、(10分)我市某火龙果基地销售火龙果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克6.8元,由基地免费送货;方案B:每千克6元,客户需支付运费2000元 .
(1)请分别写出按方案A,方案B购买这种火龙果的应付款y(元)与购买数量x(kg)之间的函数表达式;
(2)求购买量在什么范围时,选择方案A比方案B付款少?
(3)某水果批发商计划用30000元,选用这两种方案中的一种,购买尽可能多的这种火龙果,他应选择哪种方案?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(,-1),则不等式mx+2<kx+b<0的解集为____.
20、(4分)若最简二次根式与能合并成一项,则a=_____.
21、(4分)将直线y=2x-3平移,使之经过点(1,4),则平移后的直线是____.
22、(4分)如果P(2,m),A (1, 1), B (4, 0)三点在同一直线上,则m的值为_________.
23、(4分)如图,在矩形ABCD中,对角线AC的垂直平分线分别交AB,CD于点E,F,连接AF,CE,如果∠BCE=26°,则∠CAF=_____
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值:,其中满足.
25、(10分)先化简,再求值:(x+2-)•,其中x=3+.
26、(12分)如图1,,以点为顶点、为腰在第三象限作等腰.
(1)求点的坐标;
(2)如图2,在平面内是否存在一点,使得以为顶点的四边形为平行四边形?若存在,请写出点坐标;若不存在,请说明理由;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由题意得:,又,则k的值即可求出.
【详解】
设,
直线与双曲线交于A、B两点,
,
,
,
,
,则.
又由于反比例函数位于一三象限,,故.
故选A.
本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为,是经常考查的一个知识点.
2、B
【解析】
作辅助线找全等三角形和特殊的直角三角形解题,见详解.
【详解】
解:连接BD
∵四边形ABCD是矩形
∴AC=BD,AC、BD互相平分
∵O为AC中点
∴BD也过O点
∴OB=OC
∵∠COB=60°,OB=OC
∴△OBC是等边三角形
∴OB=BC=OC,∠OBC=60°
∵FO=FC,BF=BF
∴△OBF≌△CBF(SSS)
∴△OBF与△CBF关于直线BF对称
∴FB⊥OC,OM=CM.故③正确
∵∠OBC=60°
∴∠ABO=30°
∵△OBF≌△CBF
∴∠OBM=∠CBM=30°
∴∠ABO=∠OBF
∵AB∥CD
∴∠OCF=∠OAE
∵OA=OC
可得△AOE≌△COF,故①正确
∴OE=OF
则四边形EBFD是平行四边形,又可知OB⊥EF
∴四边形EBFD是菱形.故④正确
∴△EOB≌△FOB≌△FCB.则②△EOB≌△CMB错误
∵∠OMB=∠BOF=90°,∠OBF=30°,
设MB=a,则OM=a,OB=2a,
OF=OM,
∵OE=OF
∴MB:OE=3:2.则⑤正确
综上一共有4个正确的,
故选B.
本题考查了四边形的综合应用,特殊的直角三角形,三角形的全等,菱形的判定,综合性强,难度大,认真审题,证明全等找到边长之间的关系是解题关键.
3、C
【解析】
随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.
【详解】
A. 抛出的篮球会落下是必然事件,故本选项错误;
B. 从装有白球的袋里摸出红球,是不可能事件,故本选项错误;
C.购买10张彩票,中一等奖是随机事件,故本选正确。
D. 地球绕太阳公转,是必然事件,故本选项错误;
故选:C.
本题考查随机事件,熟练掌握随机事件的定义是解题关键.
4、C
【解析】
试题分析:如图所示,∵点E、F、G分别是△ABC的边AB、边BC、边CA的中点,
∴AE=BE=GF=AB,AG=CG=EF=AC,BF=CF=EG=BC,GF∥AB,EG∥BC,EF∥AC,
∴四边形AEFG、BEGF、CFEG都是平行四边形.故选C.
考点: 平行四边形的判定;三角形中位线定理.
5、D
【解析】
根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.
【详解】
解:∵CE∥AB,
∴∠B=∠DCE,∠BAD=∠E,
在△ABD和△ECD中,
∴△ABD≌△ECD(AAS),
∴DA=DE,AB=CE,
∵AD=DE,BD=CD,
∴四边形ABEC为平行四边形,
故选:D.
本题考查了平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解决本题的关键是证明△ABD≌△ECD.
6、C
【解析】
根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.
【详解】
一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
所以|k|-2=1,
解得:k=±2,
因为k-2≠0,所以k≠2,
即k=-2.
故选:C.
本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
7、D
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
解:是分式,共4个
故选:D.
本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.
8、D
【解析】
试题分析:由题意知小高从家去上班花费的时间为12分钟,当8
点评:本题考查求函数关系式,做此类题的关键是审清楚题,找出题中各量之间的关系
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≤1.
【解析】
将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;
【详解】
解:点P(m,3)代入y=x+2,
∴m=1,
∴P(1,3),
结合图象可知x+2≤ax+c的解为x≤1,
故答案为:x≤1.
本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.
10、,
【解析】
先把-2移项,然后用直接开平方法求解即可.
【详解】
∵,
∴,
∴x+3=±,
∴,.
故答案为:,.
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
11、
【解析】
首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.
【详解】
连接EF交AC于O,
∵四边形EGFH是菱形,
∴EF⊥AC,OE=OF,
∵四边形ABCD是矩形,
∴∠B=∠D=90°,AB∥CD,
∴∠ACD=∠CAB,
在△CFO与△AOE中,
,
∴△CFO≌△AOE(AAS),
∴AO=CO,
∵AC=,
∴AO=AC=5,
∵∠CAB=∠CAB,∠AOE=∠B=90°,
∴△AOE∽△ABC,
∴,
∴,
∴AE=.
故答案为: .
此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.
12、30°
【解析】
解:∵四边形ABCD是矩形,
∴∠B=90°,
∵E为边AB的中点,
∴AE=BE,
由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,
∴AE=FE,
∴∠EFA=∠EAF=75°,
∴∠BEF=∠EAF+∠EFA=150°,
∴∠CEB=∠FEC=75°,
∴∠FCE=∠BCE=90°-75°=15°,
∴∠BCF=30°,
故答案为30°.
本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.
13、105°或45°
【解析】
根据菱形的性质求出∠ABD=∠DBC=75°利用等腰三角形的性质求出∠EBD=∠EDB=30°,再分点E在BD右侧时,点E在BD左侧时,分别求出答案即可.
【详解】
∵四边形ABCD是菱形,
∴AB=AD=BC=CD,∠C=∠ABC=∠ADC=150°,
∴∠ABD=∠DBC=75°,
∵EB=ED,∠DEB=120°,
∴∠EBD=∠EDB=30°,
当点E在DB左侧时,∠EBC=∠EBD+∠CBD=105°,
当点在DB右侧时,∠BC=∠CBD-∠BD=45°,
故答案为:105°或45°.
此题考查菱形的性质,等腰三角形的性质,正确理解题意分情况求解是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)见解析.
【解析】
(1)根据四边形的内角和是360°,即可得到结论;
(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可.
【详解】
解:(1)∵四边形ABCD是“和谐四边形”,∠A+∠B+∠C+∠D=360°,
∵∠B=135°,
∴∠A=∠D=∠C=(360°−135°)=75°,
故答案为:75°;
(2)证明:∵四边形DEBF为平行四边形,
∴∠E=∠F,且∠E+∠EBF=180°.
∵DE=DA,DF=DC,
∴∠E=∠DAE=∠F=∠DCF,
∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,
∴∠DAB=∠DCB=∠ABC,
∴四边形ABCD是“和谐四边形”.
本题主要考查了翻折变换−折叠问题,四边形的内角和是360°,平行四边形的性质等,解题的关键是理解和谐四边形的定义.
15、 (1)证明见解析;(2)1.
【解析】
(1)只要证明CB=CE,利用等腰三角形的三线合一的性质即可解决问题;
(2)根据CE=CB,求出BC的长即可解决问题.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CE,
∴∠E=∠ABE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠E=∠CBE,
∴CB=CE,
∵CF⊥BE,
∴BF=EF.
(2)∵四边形ABCD是平行四边形,
∴AB=CD=8,
∵DE=4,
∴BC=CE=12,
∴平行四边形ABCD的周长为2(AB+BC)=1.
本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.
16、(1);(2);(3)t=1或t=3
【解析】
(1)首先做辅助线BF⊥OC于F,AG⊥x轴于G,在Rt△BCF中,求出BF,BF=AG,OG=CF,又因为A在第二象限,即可得出点A的坐标.
(2)需分两种情况:
①当时,即P从A运动到B,求出三角形的面积,
②当时,即P从B运动到C,求出三角形的面积,
将两种情况综合起来即可得出最后结果.
(3)在(2)的条件下,当t=1或t=3时,根据三角形的性质,可以判定△POC为直角三角形.
【详解】
(1)如图,做辅助线BF⊥OC于F,AG⊥x轴于G
在Rt△BCF中,∠BCF=60°,BC=4,CF=2,BF=,
BF=AG=,OG=CF=2,A在第二象限,
故点A的坐标为(-2,)
(2)当时,即P从A运动到B,S==,
设P(m,n),∠BCO=60°,
当时,即P从B运动到C,BP=2t,
则cs30°==,
,
则S==
综上所述,
(3)在(2)的条件下,当t=1或t=3时,△POC为直角三角形.
此题主要考查在平面直角坐标系中,利用菱形的性质,进行求解点坐标,以及动点问题,再利用直角三角形的三角函数,即可得解.
17、(1)答案见解析;(2)答案见解析;(3)存在,BQ=b
【解析】
(1)画出互相垂直的两直径即可;
(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,根据三角形的面积公式和正方形的性质求出即可;
(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.
【详解】
解:(1)如图1所示,
(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,
则直线EF、OM将正方形的面积四等分,
理由是:∵点O是正方形ABCD的对称中心,
∴AP=CQ,EB=DF,
在△AOP和△EOB中
∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,
∴∠AOP=∠BOE,
∵OA=OB,∠OAP=∠EBO=45°,
∴△AOP≌△EOB,
∴AP=BE=DF=CQ,
设O到正方形ABCD一边的距离是d,
则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,
∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,
直线EF、OM将正方形ABCD面积四等份;
(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,
理由是:如图③,连接BP并延长交CD的延长线于点E,
∵AB∥CD,
∴∠A=∠EDP,
∵在△ABP和△DEP中
∴△ABP≌△DEP(ASA),
∴BP=EP,
连接CP,
∵△BPC的边BP和△EPC的边EP上的高相等,
又∵BP=EP,
∴S△BPC=S△EPC,
作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,
由三角形面积公式得:PF=PG,
在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP
∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP
即:S四边形ABQP=S四边形CDPQ,
∵BC=AB+CD=a+b,
∴BQ=b,
∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.
本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.
18、(1)方案A:yA=6.8x;方案B:yB=6x+1;(2)1≤x<2;(3)选择方案B
【解析】
(1)根据题意确定出两种方案应付款y与购买量x之间的函数表达式即可;
(2)根据A付款比B付款少列出不等式,求出不等式的解集确定出x的范围即可;
(3)根据题意列出算式,计算比较即可得到结果.
【详解】
解:(1)由题意,得方案A的函数表达式为yA=6.8x,
方案B的函数表达式为yB=6x+1.
(2)当yA<yB时,6.8x<6x+1.解得x<2.
故购买量x的范围满足1≤x<2时,
选择方案A比选择方案B付费少.
(3)当y=30000时,方案A:6.8x=30 000,
解得x≈4412(kg)
方案B:6x+1=30000,解得x≈4667 (kg),
∵4412<4667
∴要购买尽可能多的火龙果,应该选择方案B.
本题考查了一次函数的应用,弄清题中的两种方案是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣4<x<﹣
【解析】
根据函数的图像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是﹣4<x<﹣.
故答案为﹣4<x<﹣.
20、2
【解析】
根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.
【详解】
解:,
由最简二次根式与能合并成一项,得
a+2=2.
解得a=2.
故答案是:2.
本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
21、y=2x+2
【解析】
【分析】先由平移推出x的系数是2,可设直线解析式是y=2x+k,把点(1,4)代入可得.
【详解】由已知可设直线解析式是y=2x+k,
因为,直线经过点(1,4),
所以,4=2+k
所以,k=2
所以,y=2x+2
故答案为y=2x+2
【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.
22、
【解析】
设直线的解析式为y=kx+b(k≠0),
∵A(1,1),B(4,0),
,解之得 ,
∴直线AB的解析式为 ,
∵P(2,m)在直线上,
.
23、29°.
【解析】
【分析】先证明△AOE≌△COF,得出OE=OF,再根据EF垂直平分AC,得出四边形AFCE为菱形,然后再根据菱形对角线的性质结合∠BCE=26°进行求解即可得.
【详解】∵EF垂直平分AC,
∴OA=OC,
∵四边形ABCD为矩形,
∴CD∥AB,∠BCD=90°,
∴∠EAO=∠FCO,
又∵∠AOE=∠COF,
∴△AOE≌△COF,
∴OE=OF,
∴四边形AFCE为平行四边形,
又∵EF垂直AC,
∴平行四边形AFCE为菱形,
∴∠CAF=∠FAE,∠FAE=∠FCE,
∵∠BCE=26°,
∴∠FCE=90°-∠BCE=64°,
∴∠CAF=32°,
故答案为32°.
【点睛】本题考查了矩形的性质、菱形的判定与性质,熟练掌握菱形的判定与性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、,
【解析】
先利用分式的性质和计算法则化简,再通过求出a、b的值,最后代入求值即可.
解:原式
∵
∴,
∴原式
25、x-3,
【解析】
原式括号内先通分,再算减法,然后进行分式的乘法运算,再把x的值代入化简后的式子计算即可.
【详解】
解:原式=•=•=•=x-3;
当x=3+时,原式=3+-3=.
本题考查了分式的化简求值,熟练掌握分式的混合运算法则是解题的关键.
26、(1)点的坐标为;(2)(-4,-6)或(-8,2)或(4,-2).
【解析】
(1)由“AAS”可证△ACD≌△BAO,可得OA=CD=2,AD=OB=4,即可求点C坐标;
(2)分三种情况讨论,由平行四边形的性质和中点坐标公式可求点H坐标.
【详解】
解:(1)如图1,过作轴于M点
,则,
在和中,
,
,
,
,
点的坐标为,
(2)设点H(x,y),
∵OA=2,OB=4,
∴A(-2,0),点B(0,-4),
若四边形ABHC是平行四边形,
∴AH与BC互相平分,
∴,,
∴x=-4,y=-6,
∴点H坐标(-4,-6).
若四边形ABCH是平行四边形,
∴AC与BH互相平分,
∴,,
∴x=-8,y=2,
∴点H坐标(-8,2),
若四边形CAHB是平行四边形,
∴AB与CH互相平分
∴,,
∴x=4,y=-2,
∴点H坐标(4,-2),
综上所述:点H坐标为(-4,-6)或(-8,2)或(4,-2).
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,等腰直角三角形的性质,利用分类讨论思想解决问题是本题的关键.
题号
一
二
三
四
五
总分
得分
湖北省省直辖县2023-2024学年数学九年级第一学期期末达标测试试题含答案: 这是一份湖北省省直辖县2023-2024学年数学九年级第一学期期末达标测试试题含答案,共8页。
海南省省直辖县2023-2024学年数学九上期末统考模拟试题含答案: 这是一份海南省省直辖县2023-2024学年数学九上期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
海南省省直辖县2023-2024学年八上数学期末监测模拟试题含答案: 这是一份海南省省直辖县2023-2024学年八上数学期末监测模拟试题含答案,共7页。试卷主要包含了下列命题为假命题的是,分式方程+=1的解是等内容,欢迎下载使用。